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ABSTRACT

Overlapped speech is one of the main challenges in conversational
speech applications such as meeting transcription. Blind speech sep-
aration and speech extraction are two common approaches to this
problem. Both of them, however, suffer from limitations resulting
from the lack of abilities to either leverage additional information
or process multiple speakers simultaneously. In this work, we pro-
pose a novel method called speech separation using speaker inven-
tory (SSUSI), which combines the advantages of both approaches
and thus solves their problems. SSUSI makes use of a speaker inven-
tory, i.e. a pool of pre-enrolled speaker signals, and jointly separates
all participating speakers. This is achieved by a specially designed
attention mechanism, eliminating the need for accurate speaker iden-
tities. Experimental results show that SSUSI outperforms permuta-
tion invariant training based blind speech separation by up to 48%
relatively in word error rate (WER). Compared with speech extrac-
tion, SSUSI reduces computation time by up to 70% and improves
the WER by more than 13% relatively.

Index Terms— speaker inventory, speech separation, speech ex-
traction, PIT, LibriSpeech

1. INTRODUCTION

Speech overlaps occur commonly in human conversations. They
make speech recognition and diarization in conversations difficult.
The task of separating overlapped speech is referred to as speech
separation and has long been an active research area.

A key challenge in speech separation is the so-called permu-
tation problem as defined in [1]. When multiple speakers are in-
volved in one utterance, the order of the output signals may be ar-
bitrary, which generates conflicting gradients across training utter-
ances. Two families of algorithms were proposed to handle the
permutation problem, namely blind speech separation and speech
extraction. With blind speech separation, the permutation problem
is usually handled by a specially designed training objective that is
invariant to the order of the output. Deep clustering (DC) [1, 2]
and permutation invariant training (PIT) [3, 4] are two representa-
tive approaches. Several studies were conducted to improve these
approaches, including new objective functions [5, 6, 7], end-to-end
training [8, 9, 10, 11, 12], different architectures [13, 14, 15], and
feature spaces [16, 17, 18, 19, 20, 21]. The speech extraction ap-
proach tackles the permutation problem by leveraging bias informa-
tion that helps distinguish the target speaker from others. Such bias
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information includes vision signals [22, 23, 17], speaker locations
[24, 25, 26], and speaker identities (SIDs) [27, 28, 29, 30, 31, 32].

Compared with the vision and location signals, SIDs are eas-
ier to acquire since they do not need additional hardware such as
cameras or microphone arrays. In fact, they may be readily avail-
able in many conversational scenarios such as meetings. Delcroix
et al. proposed a method called SpeakerBeam to adapt sub-layers
to a target speaker in the context adaptive deep neural network
(CADNN) framework [27, 28]. VoiceFilter proposed by Wang et
al. [29] concatenates spectral features with a d-vector generated by
an SID model to extract the speech of the target speaker. Wang et
al. proposed deep extractor network (DENet) [30], which stacks
two DANets. The output of an “anchor” (i.e. speaker profile) based
DANet is used as additional features for the mixed speech based
DANet. Xiao et al. proposed an attention based speech extrac-
tion model [31], which uses an attention mechanism to generate
context-dependent biases for speech extraction. Recently, Ochiai et
al. proposed ASENet, a unified framework for speech separation
and extraction [32]. They use an attention mechanism to combine
internal embedding vectors of mixed speech and the embedding of
the profile for the target speaker. Speech extraction systems have
limitations when applied to conversation processing tasks. First,
since only one speaker can be extracted at a time, the computational
cost is proportional to the number of speakers. Second, the extrac-
tion process is performed independently for each speaker, which
may result in insufficient discrimination between some speakers.

We propose a novel speech separation system combining the
advantages of speech extraction and speech separation. Using a
speaker inventory, i.e. a list of audio snippets of candidate speak-
ers, the proposed system achieves better separation quality than PIT
based blind speech separation. Meanwhile, it improves the efficacy
and performance over speech extraction since it is not tied with a
single target speaker.

The rest of this paper is organized as follows. In Section 2, we
describe SSUSI. Section 3 and 4 contain the experimental setup and
results. Finally, we make a conclusion in Section 5.

2. SYSTEM DESCRIPTION

2.1. Task Definition

This study addresses the speech separation problem when a list of
candidate speakers is available, as with the case of scheduled busi-
ness meetings, where the candidate speakers correspond to the meet-
ing invitees. The voice profiles of some candidate speakers are given
beforehand, forming a speaker inventory. Speakers involved in the
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overlapped speech are referred to as relevant speakers. In this paper,
the number of relevant speakers is assumed to be two and the speaker
inventory only contains voice recordings collected before the meet-
ing. It should be noted that the relevant speakers may not be included
in the inventory. In the experiment section, we test our algorithm in
this setting.

2.2. Speech Separation Using Speaker Inventory

The speech separation using speaker inventory (SSUSI) model
consists of a profile selection system and a speech separation sys-
tem. The profile selection system selects relevant profiles from
the speaker inventory. The speech separation system then uses the
selected profiles as additional information to separate the mixed
speech. An illustration of SSUSI is shown in Fig. 1.

2.2.1. Profile Selection System

The profile selection system, shown in Fig. 2-(a), aims at selecting
relevant profiles from the speaker inventory. It has three main com-
ponents, an embedding module, a weight calculation module, and a
profile selector.

The embedding module maps input features X ∈ RT×F to em-
beddings E ∈ RT×E , where T refers to frames, F is the input
feature dimension, and E denotes the embedding dimension. This
embedding module is shared among mixed speech and speaker pro-
files. For mixed speech Xm ∈ RTm×F , the embedding can be
expressed as Em ∈ RTm×E . Similarly, for a profile p in speaker
inventory P , the embedding can be represented as Ep ∈ RTp×E .

The weight calculation module measures the correlations be-
tween the embedding of mixed speech and those of speaker profiles.
We denote the vector in Em at time i as em

i and that in Ep at time
j as ep

j . i ranges from 1 to Tm, whereas j from 1 to Tp. The opera-
tions in the weight calculation module can be described as equations
(1) and (2):

dpi,j = em
i · ep

j (1)

wp
i,j =

exp(dpi,j)∑
p∈P

∑Tp

j=1 exp(dpi,j)
(2)

where dpi,j denotes the dot product of embedding vectors em
i and

ep
j . Note the denominator in equation (2) is a summation over both

profile time steps j and profiles p.
The profile selector then calculates the average weight wp for

each profile p as follows:

wp =

∑Tm
i=1

∑Tp

j=1 w
p
i,j

TmTp
(3)

We select two profiles c1 and c2 that have the first and second
largestwp values to be the relevant profiles for the speech separation
system:

c1 = arg max
p∈P

{wp} (4)

c2 = arg max
p∈P−{c1}

{wp} (5)

2.2.2. Speech Separation System

Using selected profiles c1 and c2, the speech separation system gen-
erates estimated masks M1 and M2 in three steps, embedding, at-
tention, and separation. A diagram depicting the speech separation
system is shown in Fig. 2-(b).

The embedding module in the profile selection system is reused
in the speech separation system. Note that the embedding modules
for profile selection and speech separation can also be different, as
will be discussed in Section 2.3.

The attention mechanism for speech separation is similar to
that for profile selection but is applied to form speaker biases. The
speaker bias bc1i for selected profile c1 at time i can be calculated
according to equations (6) and (7) shown below:

αc1
i,j =

exp(dc1i,j)∑Tc1
j=1 exp(dc1i,j)

(6)

bc1i =

Tc1∑
j=1

αc1
i,je

c1
j (7)

where αc1
i,j denotes element i, j in the attention matrix for selected

profile c1. The bias for c2 can be calculated similarly.
Note that weight matrix elementwp

i,j in equation (2) differs from
attention matrix element αc1

i,j in equation (6) in that wp
i,j measures

the correlations between the embedding of mixed speech and those
of speaker profiles, whereas αc1

i,j softly aligns the embeddings of
relevant profiles to that of the mixed speech.

Finally, a PIT based separator takes speaker biases as additional
input and generates the separation result. Let Y 1 and Y 2 be the
target clean features. An utterance-wise PIT loss can be expressed
by equations (8) and (9) as follows:

L(θ) = min{l1,1 + l2,2, l1,2 + l2,1} (8)

where L denotes the loss of a training sample and θ means learnable
parameters. lu,v refers to the loss corresponding to Mu and Y v ,
which is defined as:

lu,v = ||Mu ⊗Xm − Y v||2F , (9)

where || · ||F denotes a matrix Frobenius norm and ⊗ the element-
wise multiplication.

2.3. SSUSI with Profile Selection Embedding

In the simplest implementation of SSUSI (vanilla SSUSI) described
in subsection 2.2, the embedding module is optimized only for
speech separation and may not be well-suited for profile selection.
To improve it, we can train a separate embedding module specif-
ically for the profile selection system. This method is denoted as
SSUSI with profile selection embedding (SSUSI-PSE).

The loss function for the profile selection embedding module is
as follows:

L(θ) = (1− wc1 − wc2)2 +
∑

c̄k∈P−{c1,c2}

(wc̄k )2 (10)

We divide speaker inventory P into two subsets, relevant pro-
files {c1, c2} and irrelevant profiles P − {c1, c2}. For relevant pro-
files c1 and c2, the training objective is to make their summation
equal one, whereas for each irrelevant profile c̄k ∈ P − {c1, c2},
the objective is to set it to zero.

2.4. SSUSI with Matched Training

In addition to a specifically trained embedding module for speaker
profile selection, another way to improve vanilla SSUSI is to make
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Fig. 1. An illustration of SSUSI. The thick arrows denote the representations corresponding to the speaker inventory and the four arrows
between the speech separation system and separated speech refer to PIT.

the speech separation system more robust to wrong profile selec-
tions. SSUSI with matched training (SSUSI-MT) achieves this goal
by jointly optimizing the profile selection and speech separation sys-
tems using a single PIT objective during training. Note that for
vanilla SSUSI, we only train the speech separation system and reuse
the embedding module in the speech separation system for profile
selection at test time.

Note that the profile selection system uses an argmax function
to select relevant profiles. Although the gradients w.r.t. the indices
selected by argmax are hard to derive, we can still back-propagate
errors w.r.t. the selected profiles for SSUSI-MT.

3. EXPERIMENTAL SETUP

3.1. Dataset

Our experiments are conducted on the LibriSpeech corpus [33] fol-
lowing the same recipe in [31]. We generate the training set us-
ing both of the clean training sets in LibriSpeech. At test time, the
mixed speech is generated using the clean test set. For SSUSI mod-
els, the profile orders in the speaker inventory are randomized for
both training and test. There are 1172 speakers in the training set
and 40 speakers in the test set.

We use log spectrum features as model input in this study. The
length of each frame is 32ms (i.e. 512 samples with a sampling rate
of 16kHz) and the shift is 16ms. The waveform signals are trans-
formed using a 512 dimensional short-time Fourier transformation
(STFT) function. For the training targetM , we use the spectral mag-
nitude domain ideal ratio mask.

3.2. Implementation Details

3.2.1. Baseline Systems

An utterance-wise PIT based model [34] and Xiao et al.’s speech
extraction system are used as the baselines in our experiments.

The PIT based model consists of six bidirectional long short-
term memory (BLSTM) layers, each has 512 nodes with 256 forward
and 256 backward cells. The mask for each source is estimated with
the signal restoration loss function as suggested in (8) and (9).

The speech extraction baseline has the same model architecture
and hyper-parameters as Xiao et al.’s model [31]. In addition, the
number of learnable parameters is the same as that of the PIT based
model above. For both the PIT based and speech extraction base-
lines, the optimizer is Adam and the learning rate is 10−4.

3.2.2. SSUSI

The three types of SSUSI models have the same architecture as
shown in Fig. 2. The vanilla SSUSI and SSUSI-MT have the same
number of learnable parameters as those in the baselines, whereas
SSUSI-PSE needs an additional embedding module consisting of
three BLSTM layers.

For SSUSI-PSE and SSUSI-MT, two irrelevant profiles (i.e. four
speaker profiles in total) are included during training. The profile
selection embedding module in SSUSI-PSE is initialized with the
well-trained embedding module in the vanilla SSUSI, whereas the
whole SSUSI-MT is initialized with the vanilla SSUSI. The learning
rates for the vanilla SSUSI, SSUSI-PSE and SSUSI-MT are 10−4,
10−6, and 10−5, respectively. All the other hyper-parameters are the
same as the baselines.

Note that during training, we shuffle the order of speaker pro-
files. This makes SSUSIs invariant to speaker profile permutations.

3.2.3. ASR Backend

The ASR backend is trained on the clean training set in LibriSpeech.
The model consists of three BLSTM layers, each has 512 nodes. We
generate forced aligned senone labels using Kaldi [35] and train the
model using PyTorch with the maximum mutual information (MMI)
criterion. Using this backend, the average WER for non-overlapped
LibriSpeech test set is 5.7%.

4. EVALUATION RESULTS

We first show the results of the three types of SSUSI models de-
scribed in Section 2. Then we compare SSUSI with PIT and Xiao et
al.’s speech extraction method. Finally, we analyze the performance
of SSUSI by testing it in cases when one or both speakers are miss-
ing from the inventory. The last experiment shows some degree of
robustness of the proposed algorithm and that the performance im-
provement of SSUSI over PIT is a result of the use of the speaker
inventory.

4.1. SSUSI

The correct profile selection rates and signal to distortion ratios
(SDRs) of the vanilla SSUSI model tested on up to six irrelevant
profiles are shown in Table 1:

The vanilla SSUSI model gets an SDR of 12.1 dB when both
relevant profiles are correctly selected. With the increase of irrele-
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Fig. 2. The profile selection and speech separation systems in SSUSI. See Fig. 1 caption for acronyms.

method # ir-profiles ≥1 (%) 2 (%) SDR (dB)

SSUSI

0 100 100 12.1
1 100 82.1 11.8
2 99.9 71.6 11.6
3 99.8 64.1 11.4
4 99.5 58.2 11.2
5 99.2 54.9 11.1
6 99.0 51.4 11.0

Table 1. The correct profile selection rates and SDRs of the vanilla
SSUSI model. The number of profiles corresponding to irrelevant
speakers is denoted as # ir-profiles. The total number of profiles in
the speaker inventory is # ir-profiles plus 2. The correct selection of
at least one relevant profile is denoted as≥1 and that of both relevant
profiles as 2.

vant profiles, all three metrics decrease. The correct selection rate
of at least one relevant profile drops slightly from 100% to 99.0%,
whereas that of both relevant profiles decreases significantly from
100% to 51.4%. SDRs are degraded by wrong profile selections. In
the case when there are six irrelevant profiles, the SDR drops to 11.0
dB.

4.2. SSUSI-PSE

We show the correct profile selection rates and SDRs of SSUSI-PSE
in Table 2 below:

method # ir-profiles ≥1 (%) 2 (%) SDR (dB)

SSUSI-PSE

0 100 100 12.1
1 100 86.7 11.9
2 100 78.5 11.7
3 99.8 72.5 11.6
4 99.7 67.8 11.5
5 99.4 63.8 11.3
6 99.3 61.1 11.3

Table 2. The correct profile selection rates and SDRs of SSUSI-PSE.
See Table 1 caption for acronyms.

Using profile selection embedding, the correct profile selection
rate of both relevant profiles improves significantly. Moreover, the
improvement gets larger as the number of irrelevant profiles in-
creases. Table 2 also shows that the SDRs benefit from better profile
selection. As regards the SDRs, for the six irrelevant profile case,
the 11.0 dB result of the vanilla SSUSI increases to 11.3 dB using
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SSUSI-PSE.

4.3. SSUSI-MT

The correct profile selection rates and SDR results of SSUSI-MT are
shown in Table 3:

method # ir-profiles ≥1 (%) 2 (%) SDR (dB)

SSUSI-MT

0 100 100 12.2
1 100 81.0 12.0
2 99.8 69.6 11.9
3 99.6 61.9 11.8
4 99.4 56.5 11.6
5 99.0 52.8 11.6
6 98.7 49.7 11.5

Table 3. The correct profile selection rates and SDRs of SSUSI-MT.
See Table 1 caption for acronyms.

SSUSI-MT yields substantial SDR improvements over the
vanilla SSUSI. Its SDR in the six irrelevant profile setting is 11.5 dB,
outperforming both the vanilla SSUSI and SSUSI-PSE. The SDR of
SSUSI-MT on zero irrelevant profile is 12.2dB, slightly surpassing
that of the vanilla SSUSI. Note that the correct profile selection
rates of SSUSI-MT are worse than those of the vanilla SSUSI. This
supports our argument that the gain of the matched training comes
mainly from the consistency between training and test rather than
the improvement in profile selection.

Since SSUSI-MT performs the best among the three types of
SSUSI in this study, we use it for the comparisons with other meth-
ods in the following subsections.

4.4. Comparisons Between SSUSI and PIT

The SDR and word error rate (WER) comparisons between SSUSI-
MT and PIT are shown in Table 4. For SSUSI-MT, in addition to
0 and 6 irrelevant profiles, we also show the results on 22 and 30
irrelevant profiles.

method # ir-profiles SDR (dB) WER (%)

PIT - 8.7 36.5

SSUSI-MT

0 12.2 19.1
6 11.5 21.8
22 11.0 23.4
30 10.8 24.1

Table 4. The SDR and WER comparisons between SSUSI-MT and
PIT. See Table 1 caption for acronyms.

With respect to SDR, SSUSI-MT performs significantly better
than PIT. Even when there are 30 irrelevant profiles, SSUSI-MT still
yields an SDR of 10.8 dB. Note that SSUSI-MT is trained using
only 2 irrelevant profiles. The results on 22 and 30 irrelevant profiles
show the robustness and generalization ability of SSUSI-MT.

For WERs, SSUSI-MT outperforms PIT by 48% relatively when
there is no irrelevant profile. In the case when there are 30 irrelevant
profiles, the relative improvement is still 34%. This clearly shows
the effectiveness of SSUSI-MT. The consistency between SDR and
WER results is aligned with the observation in Weninger et al.’s
study [36]. Note that the absolute values of the WERs in Table 4

are relatively high for the LibriSpeech corpus. In addition to the
distortion in separated speech, we think another reason may be that
the long silent segments in separated speech may result in inaccurate
estimations of the statistics for utterance-wise input feature normal-
ization.

4.5. Comparisons Between SSUSI and Speech Extraction

We show the SDR and WER comparisons between SSUSI-MT and
the speech extraction system of [31] in Table 5:

method # ir-profiles SDR (dB) WER (%)

Speech Extraction [31]
0 11.5 21.9
1 11.1 23.3
2 10.9 24.4

SSUSI-MT
0 12.2 19.1
1 12.0 19.9
2 11.9 20.4

Table 5. The SDR and WER comparisons between SSUSI-MT and
speech extraction system. See Table 1 caption for acronyms.

SSUSI-MT substantially outperforms the speech extraction sys-
tem. In terms of SDR, an improvement of more than 0.7 dB is
yielded. As for WER, the overall relative improvement is over 13%.
Moreover, the improvement in both SDR and WER gets larger with
the increase of irrelevant profiles. The reason of the performance
improvement may be that the profile selection system in SSUSI-MT
filters out the interfering information in irrelevant profiles by a de-
terministic selection of relevant profiles. Even in the case of zero
irrelevant profile, SSUSI-MT provides a meaningful improvement
over the speech extraction system. This implies SSUSI-MT’s better
discrimination capability between similar speakers. This could be
because it attempts to separate two speakers simultaneously, unlike
speech extraction.

In addition to separation accuracy, SSUSI-MT improves the ef-
ficacy over the speech extraction system significantly. In the case of
zero irrelevant profiles, the computation time reduction is about 40%
relatively. If there are 30 irrelevant profiles, the computation time
reduces by 70% relatively. The reason is that using a single thread,
speech extraction systems need to be run repetitively for each can-
didate speaker, whereas the profile selection system in SSUSI-MT
filters out all but one pair of speaker profiles for the separation sys-
tem.

4.6. An Analysis On SSUSI

We analyze the influence of speaker inventory’s accuracy on SSUSI-
MT by testing it in cases where one or both relevant profiles are
missing. The SDR values in these cases are shown in Table 6 below:

In the case when one relevant profile is missing, the SDRs of
SSUSI-MT drop to values close to 10.1 dB. When both relevant
profiles are missing, the SDRs further drop to 8.5 dB or so. This
confirms that SSUSI-MT indeed leverages the information in the
speaker inventory. Note that SSUSI-MT performs similarly to PIT
when both relevant profiles are missing. This shows that the perfor-
mance improvement of SSUSI-MT over PIT comes only from the
speaker inventory. This also suggests the robustness of the proposed
SSUSI-MT to the missing profiles. Even when only one relevant
speaker is included in the inventory, SSUSI-MT substantially out-
performs PIT.
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method # ir-profiles standard m1 m2

SSUSI-MT

0 12.2 - -
1 12.0 10.0 -
2 11.9 10.2 8.6
3 11.8 10.2 8.6
4 11.6 10.1 8.5
5 11.6 10.1 8.5
6 11.5 10.1 8.3

Table 6. The SDRs of SSUSI-MT in missing profile cases. standard
denotes both relevant profiles are in the speaker inventory, m1 refers
to cases with one relevant profiles missing, and m2 means both rele-
vant profiles are missing. See Table 1 caption for other acronyms.

5. CONCLUDING REMARKS

We have proposed SSUSI, a novel speech separation system that is
able to leverage the information in the speaker inventory compre-
hensively. In addition to the vanilla SSUSI, two improved versions
are investigated, namely SSUSI-PSE and SSUSI-MT. SSUSI-MT
performs the best among them in terms of SDR. The experimen-
tal results show that SSUSI-MT outperforms PIT based blind speech
separation by up to 48% relatively in WER. Compared with speech
extraction, SSUSI yields more than 13% relative improvement in
WER and achieves up to 70% computation time reduction. Future
work includes extending SSUSI to the multichannel case, evaluating
SSUSI in real conversations, and designing a better profile selection
strategy.
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channel speech separation with recurrent neural networks from
high-order ambisonics recordings,” in Acoustics, Speech and
Signal Processing (ICASSP), 2018 IEEE International Confer-
ence on, 2018, pp. 36–40.

[26] Y. Zhao, Z. Q. Wang, and D. L. Wang, “Two-stage deep learn-
ing for noisy-reverberant speech enhancement,” IEEE/ACM
transactions on audio, speech, and language processing, vol.
27, no. 1, pp. 53–62, 2018.

[27] K. Zmolikova, M. Delcroix, K. Kinoshita, T. Higuchi,
A. Ogawa, and T. Nakatani, “Speaker-aware neural network
based beamformer for speaker extraction in speech mixtures,”
in Interspeech, 2017.

[28] M. Delcroix, K. Zmolikova, K. Kinoshita, A. Ogawa, and
T. Nakatani, “Single channel target speaker extraction and
recognition with speaker beam,” in Intl. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp.
5554–5558.

[29] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. R.
Hershey, R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno,
“Voicefilter: Targeted voice separation by speaker-conditioned
spectrogram masking,” arXiv preprint arXiv:1810.04826,
2018.

[30] J. Wang, J. Chen, D. Su, L. Chen, M. Yu, Y. Qian, and D. Yu,
“Deep extractor network for target speaker recovery from sin-
gle channel speech mixtures,” in Proc. of INTERSPEECH,
2018, pp. 307–311.

[31] X. Xiao, Z. Chen, T. Yoshioka, H. Erdogan, C. Liu, D. Dimitri-
adis, J. Droppo, and Y. Gong, “Single-channel speech extrac-
tion using speaker inventory and attention network,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2019 IEEE In-
ternational Conference on. IEEE, 2019, pp. 86–90.

[32] T. Ochiai, M. Delcroix, K. Kinoshita, A. Ogawa, and
T. Nakatani, “A unified framework for neural speech separa-
tion and extraction,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2019 IEEE International Conference on. IEEE,
2019, pp. 6975–6979.

[33] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio
books,” in Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, 2015, pp. 5206–5210.

[34] M. Kolbk, Z. H. Tan, and J. Jensen, “Speech intelligibility po-
tential of general and specialized deep neural network based
speech enhancement systems,” IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP), pp. 153–
167, 2017.

[35] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
and others, “The Kaldi speech recognition toolkit,” in Proc. of
IEEE Workshop on Automatic Speech Recognition and Under-
standing (ASRU), 2011, pp. 1–4.

[36] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux,
J.R. Hershey, and B. Schuller, “Speech enhancement with
LSTM recurrent neural networks and its application to noise-
robust ASR,” in Proc. of International Conference on Latent
Variable Analysis and Signal Separation, 2015, pp. 91–99.

236


