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ABSTRACT

We propose a convolutional neural network (CNN) based multichan-
nel complex-domain concatenation acoustic model. The proposed
model extracts speech-specific information from multichannel noisy
speech signals. In addition, we design two CNN templates that
have wide applicability and several speaker adaptation methods
for the multichannel complex concatenation acoustic model. Even
with a simple Beamformlt beamformer and the baseline language
model, our method obtains a word error rate (WER) of 5.39% on the
CHiME-4 corpus, outperforming the previous best result by 13.06%
relatively. Using an MVDR beamformer, our model outperforms the
corresponding best system by 9.77% relatively.

Index Terms— convolutional neural network, multichannel
acoustic model, concatenation, complex, CHiME-4

1. INTRODUCTION

In multichannel speech recognition tasks, multiple signals are
recorded simultaneously. The spatial information from multiple
recordings is typically used in the form of a spatial filter by beam-
formers. The speech-specific information contained in the multiple
signals, however, may be insufficiently exploited by spatial filtering.

Beamformers are used to steer the microphone array to the
direction of the target speaker, hence attenuating the noises com-
ing from other directions [1, 2]. Commonly used beamformers
for speech recognition include weighted delay-and-sum beam-
formers such as Beamformlt [3], minimum variance distortionless
response (MVDR) beamformers [4], and generalized eigenvalue
(GEV) beamformers [5]. Beamformlt aligns the signals based on
generalized cross-correlation with phase-transform (GCC-PHAT)
values. It then assigns weights to and sums the signals. A typi-
cal MVDR beamformer works in the frequency domain. It tries
to minimize the noise power while keeping the speech power un-
changed in the steered direction. To avoid an explicit estimation of
the direction-of-arrival (DOA), the GEV beamformer is proposed. It
maximizes the signal-to-noise ratio (SNR) for each output frequency
bin separately.

Different from beamforming, prior work on multichannel con-
catenation acoustic modeling has attempted to make full use of the
speech-specific information in multiple channels, but at the cost of
not benefiting from explicit spatial information. Liu et al. concate-
nate the perceptual linear prediction (PLP) features and feed them to
a deep neural network (DNN) based acoustic model [6]. Swietojan-
ski et al. compare beamforming and concatenation for convolutional
neural network (CNN) based acoustic models [7]. Their result, how-
ever, indicates that concatenating 40-dimensional log Mel features as
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the input to the acoustic model performs worse than using a beam-
former frontend.

Recently, DNN based time-frequency masking has been demon-
strated to be very effective for the accurate estimation of the steering
vector and power spectral density (PSD) matrices [8, 9, 10]. This can
be viewed as a way of incorporating the speech related information
into the beamformer. In this work, we propose a multichannel con-
catenation acoustic model that extracts the speech-specific informa-
tion after the noisy signals are spatially filtered. Consistent improve-
ments are observed over the conventional monaural systems. Using
Beamformlt and an MVDR beamformer as frontends, our models
outperform previous best systems by 13.06% and 9.77% relatively.

The rest of this paper is organized as follows. In Section 2,
we describe our CNN based multichannel complex concatenation
acoustic model. In Sections 3 and 4, the experimental setup and
evaluation results are presented. Finally, we make some concluding
remarks in Section 5.

2. SYSTEM DESCRIPTION

In a filter-and-sum beamformer, the spatially filtered signals are
combined using the summation operation. In our filter-and-convolve
system, we substitute the summation operation in the beamformer
with a trainable convolutional layer in the acoustic model. We will
show the reason of this substitution, the framework of our system,
the templates for the convolutional layer, and the speaker adaptation
methods for our system in the following sections.

2.1. Convolution as a Substitute for Summation

A typical 2-D convolution operation with one output channel can be
expressed as the formula below.

Cc—-1T-1T-1

Yij = Z(Z Z WabZ(it+a)(j+b)) + bij ey

c=0 a=0 b=0

where y;; denotes element 7, j of the output channel, wg, element
a,bin the T' x T template of channel ¢, T{; 4)(;4s) input element
(i 4+ a), (j + b) of channel c, and b;; the bias for element i, j of the
output channel; the total number of input channels is denoted as C'.

If we set the sizes of the templates to 1 x 1’s, w® = 1, and
bi; = 0, the convolution operation can be simplified to the summa-
tion below.

c—-1
vij = ()
c=0
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This shows that summation may be viewed as a special case of
convolution. If not overfitted, trainable CNN based concatenation
models may be as good as, if not better than, summation based ones.

2.2. Model Design
2.2.1. Multichannel Complex Concatenation Acoustic Model

A diagram showing the whole system is in Fig. 1. The multi-
channel signals are fed into the beamformer to get spatially filtered.
The filtered signals are then preprocessed and transformed to the
frequency domain separately. After concatenation, the frequency-
domain features are used as the input to our CNN based multichan-
nel complex concatenation acoustic model, comprising a convolu-
tional layer, conventional feature extraction modules, and an inter-
nal monaural acoustic model. Note that the preprocessing and short-
time Fourier transform (STFT) module may be omitted if the beam-
former directly outputs frequency-domain features.

CNN Based ion Acoustic Model
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Fig. 1. The Diagram of the CNN Based Multichannel Complex Con-
catenation Acoustic Model

Although both taking multichannel signals directly as the input,
our model differs from the joint beamformer - acoustic model sys-
tems. Xiao et al. propose to jointly train the acoustic model with
a neural network predicting beamforming weights from GCC val-
ues [11]. Heymann et al.’s Beamnet jointly trains the acoustic model
with the PSD mask estimation network in the GEV beamformer [12].
Hoshen et al. propose to use a multichannel convolution over time
(tConv) layer to replace the beamformer and the Mel feature extrac-
tor [13]. Note that tConv is different from the convolution in CNN.
Sainath er al. conduct extensive work on joint multichannel separa-
tion and acoustic modeling using raw waveforms [14]. In addition
to a single tConv layer for both beamforming and feature extraction,
they also propose a factored version separating the two operations.
Adaptive variants reestimating a subset of the spatial filter coeffi-
cients based on the input are also proposed [15, 14].

Most of the joint beamformer - acoustic model systems sum the
spatially filtered signals directly. This is the main difference from
our system, which uses a trainable convolutional layer to extract the
speech-specific information. The second tConv operation in the fac-
tored version of Sainath er al.’s system, although does not do sum-
mation, differs from our system since the input is from the model-

specific “look directions™ and the convolution templates are shared
among different channels.

2.2.2. CNN Templates

We design two kinds of templates for the convolutional layer, the
weighted CNN templates and the complex CNN templates. The
weighted CNN method shares the templates for the real and imag-
inary parts of each channel, while the complex CNN templates are
designed such that the convolution operation of each channel mimics
a complex multiplication.

Figures showing the two kinds of templates are in Fig. 2. The
real part of the output is denoted as o, the imaginary part as o;, the
real part of channel c as r., and the imaginary part as i.. For the
weighted CNN method, the template for channel c is denoted as ¢..
For the complex CNN method, two templates, denoted as ., and
tci, are used for channel c.

For a detailed illustration, we denote the contribution of channel
c to the real part of the output as o, and to the imaginary part of
the output as o.;. If the biases are set to zeros, we have the formulas
below.

c—-1

Or = Z Ocr (3)
c=0
Cc—-1

0; = Z Oci (C))
c=0

For simplicity, let us take the example when the sizes of the tem-
plates are 1 x 1’s. The weighted CNN method can be expressed as
the formulas below.

Ocr = T¢ * tc (5)

Oci = tc * te (6)

The two formulas can be rewritten as the formula below.

Ocr + joci
=r¢ *xte + Jic * tc
=(re + jic) * tc @)

The corresponding formulas for the complex CNN method are
as follow.

Ocr = Te ¥ ter — e * tei (8)

Oci = T¢ * tei + 1c * ter (9)

The two formulas above can be viewed as the complex multipli-
cation of 7. + jic and ter + jtei, as in the formula below.

Ocr +jocz'
:(Tc * tep — Te * tci) +j(7"c * b + Te * tcr)
:(Tc + ]Zc) * (tcr +]tcz) (10)

For the two kinds of templates, the weighted CNN templates
may be viewed as special cases of the complex CNN ones.
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Fig. 2. Templates for the Convolutional Layer

2.3. Unsupervised Speaker Adaptation

We use four unsupervised speaker adaptation methods for our model.
Three of the methods are based on the linear input network (LIN) and
the fourth one the linear hidden network (LHN) [16, 17].

The input to multichannel complex concatenation acoustic mod-
els differs from that to conventional monaural models in two aspects,
the multiple channels and the real and imaginary parts of each chan-
nel. We design three LIN based template sharing methods accord-
ingly, shared templates, different templates for different channels,
and different templates for both different channels and different com-
plex components.

The LHN based method adds a linear layer at the input of the
internal monaural acoustic model, mimicking the LIN adaptation for
conventional monaural acoustic models.

3. EXPERIMENTAL SETUP

3.1. Dataset

Our experiments are conducted on the 4th CHiME speech separation
and recognition challenge (CHiME-4) corpus. It is a read speech

corpus with a target of distant-talking automatic speech recognition.
There are two types of data, real recorded and artificially simulated.
The real data is recorded in real noisy environments, including bus,
cafe, pedestrian area, and street junction. The simulated data, on
the other hand, is generated by artificially mixing clean speech with
noisy backgrounds.

The training set of the CHiME-4 corpus contains 1600 real utter-
ances and 7318 simulated utterances for each of the six microphone
channels. The real utterances are uttered by 4 speakers and the sim-
ulated utterances are from the 83 speakers of the WSJO SI-84 train-
ing set. The development set consists of 410*6 real utterances and
410*6 simulated utterances for each of the four audio environments.
Similarly, the test set has 330*6 real recordings and 330*6 simulated
utterances for each environment. 12% of the real data are influenced
by hardware issues or masked by the user’s hands or clothes.

3.2. Implementation Details
3.2.1. Monaural Acoustic Model

The monaural acoustic model in this work is an improved version of
the wide residual bidirectional long short-term memory (BLSTM)
network (WRBN) [18, 19]. We apply an utterance-wise recurrent
dropout method to fine tune the original WRBN. The dropout masks
for the hidden vectors are sampled once per utterance. The input
gate, output gate, forget gate, and the cell update vector use four
different masks. Using Adam optimizer with an initial learning rate
of 107°, we fine tune the WRBN for five epochs. This fine-tuned
monaural acoustic model is used as the initial model in all the fol-
lowing experiments.

3.2.2. Beamformlt as Frontend

We use the Beamformlt script provided in the Kaldi toolkit [20]. All
the settings remain default, except that do_indiv_channels is set
to 1 to output individual signals before summation. Note that the
selection of channels also follows the default in the script, i.e. only
channel 1, 3, 4, 5, and 6 are used.

The five spatially filtered waveforms are preprocessed separately
by dithering, removing the direct currency (dc) offset, conducting
pre-emphasis, and applying the povey window [20]. The output sig-
nals are then converted to the frequency domain and concatenated.

To train the weighted CNN model, we fine tune the convolutional
layer together with the internal monaural acoustic model. The sizes
of the templates are 3 x 3’s. The elements at the centers are initialized
to ones, and all the other elements zeros. The optimizer is Adam
and the initial learning rate is set to 10~ to prevent overfitting. In
addition, we also set the dropout rate to 0.1 during the fine-tuning
process.

The complex CNN model is trained in a slightly different way.
We reuse the internal acoustic model of the best weighted CNN
model, keep it fixed, and fine tune the complex CNN layer only. The
sizes of the templates are also 3 x 3’s. For the initial values of chan-
nel ¢, t. has a one at the center but t.; does not. All the non-one
elements are initialized to random values ranging from -0.01 to 0.01.
All the other settings are the same as the weighted CNN model.

3.2.3. MVDR Beamformer as Frontend

Our MVDR beamformer uses a feedforward neural network to es-
timate the PSD mask [8]. The input to the neural network is 19
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consecutive frames of the utterance-wise mean-normalized spectrum
features. The model has four hidden layers, with 2048 nodes in each
layer. The hidden activation functions are exponential linear units
(elus) and the output is compressed by the sigmoid function. The
median of the masks, i.e. the median of the network output values,
is used as the mask for the PSD estimation.

The model is trained for 30 epochs with an Adagrad optimizer
and a dropout rate of 0.1. Note that for both the MVDR beam-
former and the GEV beamformer below, we use all the six micro-
phone channels.

3.2.4. GEV Beamformer as Frontend

We use the publicly available GEV beamformer provided by Hey-
mann et al. [9]. The PSD mask estimation is based on the pro-
vided BLSTM model. We also apply the blind analytic normal-
ization (BAN) in the beamformer. Note that this version of the
GEV beamformer is weaker than the one used in Heymann ez al.’s
CHiME-4 system [19].

4. EVALUATION RESULTS

4.1. Results and Comparisons

With Beamformlt, the MVDR beamformer and the GEV beam-
former as frontends, our models yield WERs of 5.39%, 3.97%, and
4.14%, respectively. Comparisons between our results (rounded)
and the previous best results are shown in Table 1.

We use the final result of Dat ef al.’s submission as the best result
using Beamformlt [21]. Their Beamformlt-I2Rb, yielding a WER of
6.44%, may be the best system using BeamformlIt as the frontend.
For the best system using an MVDR frontend, we choose Erdogan
et al.’s submission [22]. For the two results better than Erdogan et
al.’s, Du et al. apply an iterative GEV-based generalized sidelobe
canceller and Heymann et al. use the GEV beamformer [23, 24,
19]. Since our method does not involve system ensembling, we use
Heymann et al.’s result as the best result using the GEV beamformer
[19].

Table 1. WER (%) Comparisons With the Previous Best Systems

Beamformer Beamformlt MVDR GEV
Previous Best [21, 22, 19] 6.2 4.4 3.9
Proposed 54 4.0 4.1

Our system using BeamformlIt and the baseline language model
outperforms the previous best system by 13.06% relatively. Given
the simplicity of the Beamformlt based system, the 5.39% WER
may be considerably good. Using the MVDR beamformer, our sys-
tem outperforms the corresponding best system by 9.77% relatively.
For the GEV based systems, the performance difference is mainly
caused by the beamformer itself. We can easily verify this by com-
paring the baseline (Beamformed) result 4.87% in Table 2 with the
corresponding result 4.07% in Heymann et al.’s paper [19].

4.2. Step-by-Step Results

The results after each step is shown in Table 2. Beamformed denotes
the baseline models using beamformers and the monaural acoustic
model. The row Concatenated contains the results using the un-
trained multichannel concatenation model.

Table 2. Step-by-Step WERSs (%)

Beamformer Beamformlt MVDR GEV
Beamformed 6.31 4.29 4.87
Concatenated 6.25 4.25 4.90
weighted CNN 6.14 4.23 4.75
complex CNN 6.10 4.20 4.73

The WERs of the BeamformIt and MVDR beamformer based
systems are reduced by simply concatenating the multichannel sig-
nals. For the GEV based system, the WER slightly increases after the
concatenation, possibly due to the distortion introduced in the GEV
beamforming process [5]. The complex CNN systems are better than
the Beamformed ones by 3.33%, 2.10%, and 2.87% relatively. The
consistent improvements indicate that our model is widely applica-
ble to different frontends.

4.3. Speaker Adaptation Results

The results using different speaker adaptation methods are shown in
Table 3. Shared LIN, Channel LIN, and Channel+Complex LIN de-
note shared templates, different templates for different channels, and
different templates for both different channels and different complex
components, respectively.

Table 3. WERSs (%) Using Different Adaptation Methods

Adaptation Beamformlt MVDR GEV
Shared LIN 5.97 4.19 4.67
Channel LIN 6.07 4.18 4.74
Channel+Complex LIN 6.07 4.15 4.67
LHN 5.39 3.97 4.14

The LHN based method performs the best among the four
speaker adaptation methods. The reason may be that the nonlinear
feature extraction operations in our model may make the features
more speaker-invariant.

5. CONCLUDING REMARKS

We propose a CNN based multichannel complex concatenation
acoustic model. It exploits not only the spatial information but
also the speech-specific information in the multiple signals. In ad-
dition to a backend applicable to various beamformer frontends,
our model may also be viewed as a step towards the multichan-
nel acoustic model that implicitly embeds the beamformer using
a network adaptive to different utterances. Other future directions
include better designs of the speech feature extraction layer and
the corresponding templates, new speaker adaptation methods for
complex concatenation models, the application of our model in a
frequency-wise manner as a post-filter, and the application of our
model to end-to-end systems.
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