INTERSPEECH 2019
September 15-19, 2019, Graz, Austria

Enhanced Spectral Features for Distortion-Independent Acoustic Modeling

Peidong Wang', DeLiang Wang'>

!Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA
{wang.7642, wang.77}@osu.edu

Abstract

It has recently been shown that a distortion-independent acous-
tic modeling method is able to overcome the distortion problem
caused by speech enhancement. In this study, we improve the
distortion-independent acoustic model by feeding it with en-
hanced spectral features. Using enhanced magnitude spectra,
the automatic speech recognition (ASR) system achieves a word
error rate of 7.8% on the CHiME-2 corpus, outperforming our
previous best system by more than 10% relatively. Compared
with the corresponding enhanced waveform signal based sys-
tem, systems using enhanced spectral features obtain up to 24%
relative improvement. These comparisons show that speech en-
hancement is helpful for robust ASR and that enhanced spectral
features are more suitable for ASR tasks than enhanced wave-
form signals.

Index Terms: robust ASR, speech enhancement, enhanced
spectral feature, spectral feature mapping, CHiME-2

1. Introduction

Robust automatic speech recognition (ASR) has made substan-
tial progress in recent years. While multichannel speech en-
hancement techniques such as beamforming can be directly
integrated to ASR systems to improve the recognition perfor-
mance [1, 2, 3, 4, 5], the way to combine monaural speech en-
hancement frontends and ASR backends remains a challenge
[6,7,8,9].

The difficulty in combining monaural speech enhancement
and ASR is often attributed to the speech distortion introduced
in the enhancement process. To alleviate this problem, Gao
et al. and Wang et al. proposed to jointly train mapping or
masking based speech enhancement frontends with ASR back-
ends [10, 11]. Gao et al. also proposed a progressive train-
ing scheme for speech enhancement [12, 13]. It fine-tunes en-
hancement models in a multitask manner. Instead of using clean
speech as the only target of the output layer, they add multiple
layers in a deep neural network (DNN) or a long short-term
memory (LSTM) network treating speech with progressively
decreased signal-to-noise ratio (SNR) as labels. This way, the
enhancement model is trained to reduce noise gradually, as well
as the distortion in the output layer. Bagchi er al. proposed
a mimic loss to optimize speech enhancement frontends using
the senone outputs of ASR backends [14, 15]. With a speech
enhancement frontend trained with mimic loss, an off-the-shelf
ASR model in Kaldi yields a WER of 9.3% on the CHiME-
2 corpus. Recently, Chai er al. proposed an acoustic-guided
evaluation (AGE) [16], which can estimate the performance of
speech enhancement methods when they are used for robust
ASR.

In our previous studies [17], we proposed a distortion-
independent acoustic modeling method to solve the distortion
problem. It uses a large variety of enhanced speech to train
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the acoustic model. By using enhanced speech as training
data, the distortion problem is alleviated. With the large-scale
training strategy, the distortion-independent acoustic model is
able to generalize to speech enhancement frontends not used
during training. In the paper [17], however, the distortion-
independent acoustic model does not perform as well as an
acoustic model trained and tested both on the CHiME-2 noises
(noise-dependent acoustic model). This study aims to improve
the performance of the distortion-independent acoustic model
by feeding it with enhanced spectral features directly.

There are mainly three methods to generate enhanced spec-
tral features, masking, mapping, and signal approximation (SA)
[18]. We adopt spectral mapping in this study. Note that the fo-
cus of this study is the comparison between enhanced waveform
signals and enhanced spectral features. Therefore, the choice of
masking, mapping, and SA may not influence the conclusion of
this paper.

Spectral feature mapping is a way to extract the features
of clean speech from the spectra of noisy speech. Deep learn-
ing based spectral mapping methods was introduced by Lu et
al. and Xu er al. [19, 20]. They use a deep autoencoder
(DAE) or DNN as the model architecture. Along with the devel-
opment of deep learning, many model architectures were pro-
posed. Weninger et al. and Chen et al. applied LSTM based
neural networks for speech enhancement [21, 22]. Tan et al. re-
duced the trainable parameters of LSTM by convolutional neu-
ral networks (CNNs), forming a gated residual network (GRN)
[23]. A subsequent work on convolutional recurrent network
(CRN) combined LSTM and CNN [24], enabling speech en-
hancement to be used in real-time and with low computational
complexity.

The input and output features of spectral feature mappings
do not need to be in the same domain. In Huang et al.’s pa-
per on the usage of masks as the reconstruction constraints of
monaural source separation, they applied two spectral feature
mappings for speech enhancement (“speech denoising” in the
paper) [25]. Their empirical observation is that the magnitude
to magnitude mapping performs better than the magnitude to
log Mel mapping. Han et al. conducted an extensive study
comparing different spectral feature mappings for robust ASR
[26]. Their experimental results show that the mapping from
log magnitude to log Mel works best for the DNN based ASR
backend. Bagchi er al. conducted a subsequent work combining
spectral feature mapping and multichannel source separation for
robust ASR [27]. Recently, Escudero er al. [28] proposed to
improve the dereverberation ability of Han er al.’s spectral map-
ping model [26] by combining it with weighted prediction error
(WPE) [29].

This study aims to improve the distortion-independent
acoustic modeling method by changing the input features from
enhanced waveform signals to enhanced spectral representa-
tions. Based on the ASR feature extraction process, we use
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Figure 1: Illustration of the feature extraction steps and the cor-
responding features before delta operations.

four features as spectral mapping model outputs, time-domain
(waveform), magnitude, Mel, and log Mel. The architectures of
spectral mapping models include GRN [23], LSTM [22], and
CRN [24]. With enhanced magnitude features as input, the
distortion-independent acoustic model yields a WER of 7.8%
on the CHiME-2 corpus, outperforming our previous best sys-
tem by more than 10% relatively [17]. Compared with the cor-
responding waveform signal based systems, systems using en-
hanced magnitude features obtain up to 24% improvement. This
study shows that speech enhancement is helpful for robust ASR
and that enhanced spectral features are more suitable for ASR
tasks than enhanced waveform signals.

The rest of the paper is organized as follows. We describe
spectral features and the specifics of speech enhancement mod-
els in Section 2. Section 3 and 4 present the experiment setup
and results, respectively. We give concluding remarks in Sec-
tion 5.

2. System Description

2.1. Spectral Features for Distortion-Independent Acoustic
Modeling

We use log Mel and its deltas as the direct inputs to the acoustic
model. Figure 1 shows the feature extraction steps before delta
operations. Each rectangle in the figure represents a feature ex-
traction step and the text near arrow the corresponding features.
The way to use an enhanced spectral feature is to skip the step(s)
in Figure 1 below its level. Note that delta features are typically
not used as the outputs of spectral feature mappings since the
value ranges of the static, delta, and delta-delta features differ
significantly.

2.2. Speech Enhancement for Spectral Features

This study adopts the two commonly used spectral mappings,
magnitude to magnitude (mag-mag) proposed by Huang et al.
[25] and log magnitude spectra to log Mel features (logmag-
logmel) proposed by Han et al. [26]. We also use three other
feature mappings, magnitude to waveform signals (mag-wav)
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[17], magnitude to Mel features (mag-mel), and magnitude to
log Mel features (mag-logmel). Note that the mag-wav map-
ping does not involve training. It is performed by resynthesizing
waveform signals from enhanced magnitude spectra. The phase
of noisy speech is used to reconstruct a complex representation
for enhanced speech, and an overlap-and-add technique is used
to combine waveform segments.

A GRN [23] is used as the main speech enhancement
model. For different output features, the output layers of GRN
differ slightly. We list the specifics of the output layers in Table
1 below:

Table 1: Output layer specifics for different spectral mapping
outputs. activation refers to the activation function in the output
layer and dimension is the output dimension. plus denotes the
softplus activation and lin the linear activation.

activation  dimension
mag plus 161
mel plus 80
logmel lin 80

2.3. Generalization Ability to Various Speech Enhance-
ment Frontends

One of the main features of distortion-independent acoustic
modeling is its ability to work with various speech enhancement
frontends. In this study, we investigate such generalization abil-
ity on enhanced spectral features and compare the results with
those on enhanced waveform signals.

3. Experimental Setup
3.1. Dataset

Our experiments are conducted on the medium vocabu-
lary track (track 2) of the CHiME-2 corpus. We also
use noise segments from a 10000 noise database (available
at https://www.soundideas.com) for speech enhancement and
acoustic modeling.

The CHiME-2 corpus contains reverberant and noisy utter-
ances. The utterances in the Wall Street Journal (WSJ0) corpus
are first convolved with a binaural room impulse response corre-
sponding to a frontal position at a distance of 2m. These rever-
berant utterances are then mixed with binaural noise recorded
in a family living room at six SNR levels: {-6dB, -3dB, 0dB,
3dB, 6dB, 9dB}. The training set contains 7138 utterances from
the 83 speakers in the WSJO SI-84 training set. For each of the
six SNR levels, the development set has 409 utterances from 10
other speakers. The test set consists of 330 utterances at each
SNR level. Its speakers are different from those in the training
and development set.

The speech enhancement models in this study are noise-
independent [22]. Their training set is generated by mixing re-
verberant (more specifically “scaled”) utterances in CHiME-2
with noise segments from the 10k noise database. The SNR
levels of the training utterances are randomly chosen from the
above six levels. We use reverberant only utterances as training
targets. The distortion-independent acoustic model also uses the
10k noise during training. Its training set generation process is
similar to that of the speech enhancement models. Note that
the training sets for enhancement and recognition are isolated
with respect to noise segments. We divide each noise segment



Table 2: WER comparisons of spectral feature mappings using GRN.

mapping 9dB 6dB 3dB 0dB -3dB -6dB avg
mag-wav 551 654 710 9.70 11.04 1545 9.2
mag-mag 454 545 620 792 943 1311 7.8
mag-mel 512 562 646 843 1005 1524 85
mag-logmel 532 6.16 624 844 10.54 1556 8.8
logmag-logmel 529 5.68 6.05 7.57 10.18 1437 8.2

into two parts. The distortion-independent acoustic model can
only use the first halves and the spectral mapping models the
second halves. For the distortion-independent acoustic model
in this study, the noisy utterances are fed to a GRN to gener-
ate enhanced waveform signals. The log Mel and delta features
are extracted from the enhanced waveform signal to train the
distortion-independent acoustic model.

3.2. Implementation Details

The architecture of the GRN based speech enhancement model
follows the recipe in [23]. It consists of four frequency-dilated
convolutional layers and three time-dilated blocks. The mean
and variance of 1000 training utterances are used to normalize
the features during testing. During training, the optimizer is
Adam and the learning rate is 1073, The training process stops
after 30 epochs and the model yielding the best performance on
the development set is used for evaluation. The LSTM network
is unidirectional. It has four hidden layers, each containing 512
LSTM cells. It also uses a context window of 11 for the input
features. The number of maximal training epochs is 40 and the
other training hyperparameters are the same as GRN. CRN is a
model combining the advantages of GRN and LSTM. It has a
symmetric structure consisting of five convolutional layers, two
LSTM layers, and five deconvolutional layers. Each deconvolu-
tional layer takes as input not only the output from the previous
layer but also the input of the corresponding convolutional layer.
The LSTM layer in CRN is bidirectional, each containing 512
units. The training hyperparameters for CRN is the same as the
two models above.

As mentioned in Section 2.2, for each spectral feature out-
put, we modify the instances of the GRN based speech enhance-
ment model accordingly. The training hyperparameters over
different spectral features are kept the same.

The distortion-independent acoustic model in this study
is a wide residual bidirectional LSTM network (WRBN) [9]
with utterance-wise recurrent dropout for the LSTM layers
[30, 5, 17]. During feature extraction, we skip three preprocess-
ing operations, direct current (DC) offset removal, dithering,
and pre-emphasizing. They may potentially alter the enhanced
speech. For the training process of the distortion-independent
acoustic model, we adopt Adam optimizer with a learning rate
of 10™* and a dropout rate of 0.2.

Note that during the training process of the distortion-
independent acoustic model, we only use enhanced waveform
signals. The enhanced spectral features are only applied during
evaluation.

4. Evaluation Results

4.1. Comparisons of Enhanced Spectral Features

We list the evaluation results for the five feature mappings and
the four features using GRN in Table 2. Since we use GRN both
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in training and evaluation, this comparison avoids the potential
influence of speech enhancement model mismatch.

It is clear that enhanced spectral features substantially out-
perform the enhanced waveform signal. More specifically,
mag-mag outperforms mag-wav by more than 15% relatively.
Note that the only difference between mag-wav and mag-mag
is that the mag-wav mapping resynthesizes magnitude spectra
to waveform signals. This performance difference may be at-
tributed to a phase inconsistency problem caused by combining
enhanced magnitude spectra and the phase information from
noisy speech [31, 32, 33, 34]. Although an overlap-and-add
technique is applied to alleviate its influence, the phase incon-
sistency problem may still degrade the quality of the resynthe-
sized speech. Note that in this study, we use the speech en-
hancement model as a frontend for ASR. The phase inconsis-
tency problem can thus be easily bypassed by using enhanced
spectral features directly.

Among different spectral outputs, the magnitude spectra
generated by the mag-mag mapping performs the best. Since
magnitude spectrum is a shared feature between speech en-
hancement and ASR, this shows that by distortion-independent
acoustic modeling, the performance of the acoustic model and
that of the speech enhancement frontend are correlated. The
logmag-logmel mapping yields better results than mag-mel and
mag-logmel. It also outperforms mag-mag at 3dB and OdB.
Note that for logmag-logmel mapping, we add a 10~ to each
logarithm function to prevent numerical exceptions. This may
make the input and output features of the logmag-logmel map-
ping normalized to values greater than —7, and thus its good
performances at 3dB and 0dB.

4.2. Generalization Ability to Various Speech Enhance-
ment Methods

We list the results of various speech enhancement methods in
Table 3. The ideal ratio mask (IRM) is included as an ideal
speech enhancement method. Note that the unenhanced method
can only use enhanced waveform signals.

Magnitude spectra outperform waveform signals for all
speech enhancement methods. For LSTM and CRN, the rela-
tive improvements are 19% and 24%, respectively. Even for the
IRM based speech enhancement method, enhanced magnitude
spectra still obtain a performance improvement. These com-
parisons show that the phase inconsistency problem may cause
major problems for robust ASR.

Comparing the four speech enhancement methods using
magnitude spectra, we can see that with the new input feature,
the distortion-independent acoustic model is still able to gener-
alize to various speech enhancement methods. The main con-
tribution may be from large scale training.



Table 3: WERs of various speech enhancement methods. unenhanced refers to the method extracting features directly from noisy

utterances, without the usage of speech enhancement frontends.

architecture  feature 9dB 6dB  3dB 0dB -3dB  -6dB  avg
unenhanced wav 742 8.61 10.01 1293 1485 21.80 12.6
LSTM wav 579 747 863 1136 14.16 1941 11.1
mag 534 6.07 6.74 9.58 1042 1593 9.0
CRN wav 6.65 7.68 9.04 1125 13,51 18.06 11.0
mag 523 557 648 837 1024 1480 84
IRM wav 340 344 334 3.38 3.74 3.31 3.4
mag 327 336 334 333 331 3.14 33

Table 4: Comparisons with previous best systems. distortion-independent acoustic modeling refers to using enhanced waveform signals
for distortion-independent acoustic modeling. noise-dependent acoustic model represents our previous best model proposed in [17]. It

is trained and tested on the same (CHIME-2) noises.

systems 9dB 6dB 3dB 0dB -3dB -6dB  avg

Wang and Wang [11] 6.61 686 867 1039 13.02 1823 10.6

Plantinga et al. [15] - - - - - - 9.3
distortion-independent acoustic modeling [17] 551 654 7.10 9.70 11.04 1545 9.2
noise-dependent acoustic modeling [17] 549 626 6.78 8.95 9.98 14.83 8.7

magnitude features + distortion-independent acoustic modeling 4.54 545 6.20 7.92 943 1311 7.8

4.3. Comparisons with Previous Best Systems

The comparisons between the systems in this study and our pre-
vious best are shown in Table 4. Using enhanced magnitude fea-
tures, the distortion-independent acoustic model obtains a WER
of 7.8% on the CHiME-2 evaluation set, outperforming our pre-
vious best system by 10% relatively. Moreover, multiple other
systems are also better than our previous best system. The Mel
features achieves a relative improvement of 2% and the log Mel
feature generated by the logmag-logmel mapping obtains 6%.
Note that our previous best system is a noise-dependent acoustic
model trained and tested both on the noisy speech. These con-
sistent improvements show that speech enhancement is help-
ful for robust ASR. Compared with [17], which uses enhanced
waveform signals for distortion-independent acoustic model-
ing, using enhanced magnitude features for the same acoustic
model obtains a 15% relative improvement. This shows that en-
hanced spectral features are more suitable for robust ASR than
enhanced waveform signals.

Note that Wang and Wang’s, Plantinga er al.’s, and the
noise-dependent acoustic model all follow the official CHIME-2
recipe, i.e. they use the same (CHiME-2) noises during training
and evaluation. For the distortion-independent acoustic model
in this study, the training noises are from the 10k noise database
and the test noises are CHiME-2. This training noise differ-
ence cannot be avoided since it relates directly to the design of
the training schemes. Distortion-independent acoustic model-
ing requires the usage of a large variety of noises for its gener-
alization ability to unseen noises and speech enhancement fron-
tends. One important thing to note is that the training set of
the distortion-independent acoustic model does not include the
CHiME-2 noises. Therefore, the distortion-independent acous-
tic model is tested on unseen noises, whereas the other models
are trained and tested on matched noises. This may disadvan-
tage distortion-independent acoustic modeling based methods,
but it does not influence the conclusion of this study.
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5. Concluding Remarks

In this study, we have investigated enhanced spectral features
for distortion-independent acoustic modeling. For each of the
four features in the ASR feature extraction process, we de-
sign five spectral mappings. The magnitude to magnitude map-
ping appears to perform the best. Using enhanced magni-
tude features, the distortion-independent acoustic model yields
a WER of 7.8% on the CHiME-2 corpus, outperforming our
previous best system by more than 10% relatively. In addi-
tion, multiple other spectral feature based systems also per-
form better than our previous best. The observation that the
new distortion-independent acoustic modeling based system
outperforms the noise-dependent acoustic model convincingly
shows that speech enhancement is helpful for speech recog-
nition. Compared with waveform signal based systems, sys-
tems using spectral features achieve up to 24% relative im-
provement. This suggests that enhanced spectral features are
more suitable for speech recognition tasks than enhanced wave-
form signals. In addition to the two comparisons above, we
have shown that using enhanced magnitude features in this
study, the distortion-independent acoustic model can still gen-
eralize to various speech enhancement methods. Future work
includes applying a self-attention mechanism to the distortion-
independent acoustic model, exploring time-domain speech en-
hancement for robust ASR, investigating distortion-independent
training for end-to-end speech recognition, and using distortion-
independent training for post-filtering.
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