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Complex Spectral Mapping for Single- and
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Zhong-Qiu Wang , Student Member, IEEE, Peidong Wang , Graduate Student Member, IEEE,
and DeLiang Wang , Fellow, IEEE

Abstract—This study proposes a complex spectral mapping ap-
proach for single- and multi-channel speech enhancement, where
deep neural networks (DNNs) are used to predict the real and
imaginary (RI) components of the direct-path signal from noisy
and reverberant ones. The proposed system contains two DNNs.
The first one performs single-channel complex spectral mapping.
The estimated complex spectra are used to compute a minimum
variance distortion-less response (MVDR) beamformer. The RI
components of beamforming results, which encode spatial informa-
tion, are then combined with the RI components of the mixture to
train the second DNN for multi-channel complex spectral mapping.
With estimated complex spectra, we also propose a novel method
of time-varying beamforming. State-of-the-Art performance is ob-
tained on the speech enhancement and recognition tasks of the
CHiME-4 corpus. More specifically, our system obtains 6.82%,
3.19% and 1.99% word error rates (WER) respectively on the
single-, two-, and six-microphone tasks of CHiME-4, significantly
surpassing the current best results of 9.15%, 3.91% and 2.24%
WER.

Index Terms—Complex spectral mapping, beamforming, phase
estimation, speech enhancement, microphone array processing,
deep learning.

I. INTRODUCTION

ENVIRONMENTAL noise and room reverberation are per-
vasive in modern hands-free speech communication ap-

plications such as digital assistants, teleconferencing and hear-
ing aids. These kinds of acoustic interference are detrimental
to modern automatic speech recognition (ASR) systems and
dramatically degrade speech intelligibility and quality [1], [2].
Practical systems typically use multiple microphones to leverage
spatial (in addition to spectral) information for speech enhance-
ment and audio source separation. One common approach for
multi-channel speech enhancement is beamforming followed by
post-filtering [3], [4], where a popular method is to decompose
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a time-invariant or time-varying multi-channel Wiener filter
into a product of a minimum variance distortion-less response
(MVDR) beamformer and a real-valued post-filter. Conven-
tionally, this approach requires an accurate estimate of target
direction, and speech and noise power spectral density (PSD)
and covariance matrices, which are typically computed based on
sound localization such as GCC-PHAT [5], traditional speech
enhancement [3], and blind source separation such as spatial
clustering [6], [7]. Recently, DNN based time-frequency (T-F)
masking or mapping have been established as a mainstream
approach for speech enhancement and source separation [1].
Mask (or magnitude) estimation is dramatically improved using
deep learning. Such real-valued mask estimates have been used
to identify T-F units dominated by a single source, where the
phase is less corrupted, for accurate source localization [8] and
covariance matrix estimation [9], [10]. All the top teams in
the recent CHiME-4 challenge adopted T-F masking and deep
learning based beamforming in their ASR systems [10].

We investigate single- and multi-channel DNN-based speech
enhancement and robust ASR. In addition to mask (or magni-
tude) estimation, our study explores the effects of phase esti-
mation for multi-channel speech enhancement. We emphasize
that current T-F masking based approaches for beamforming
typically compute spatial covariance matrices as a summation
of mixture outer products weighted by a mask [6], [9], [11]–[14].
In environments with strong noise and room reverberation, there
may be insufficient T-F units dominated by target speech, and
the mixture outer product at each T-F unit inevitably contains
noise and reverberation. We believe, in such cases, that it is
beneficial to perform phase estimation in addition to magnitude
estimation and directly use the estimated complex spectra for
covariance matrix computation. This method is simpler as it does
not involve a weighting mechanism. In addition, real-valued
post-filtering only performs magnitude estimation and would
inevitably produce phase inconsistency issues [15]–[17], i.e.
no time-domain signal corresponds to the estimated complex
spectrogram. Although beamforming typically improves phase,
its performance heavily depends on the number of microphones
and is susceptible to strong room reverberation [3]. Phase estima-
tion would hence be needed for post-filtering in order to further
improve the phase produced by beamforming. Although modern
ASR systems only consider magnitude-based features such as
log Mel features, accurate phase estimation can indirectly benefit
ASR as better estimated phase leads to better spatial processing
such as beamforming and target localization.
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Our study performs DNN based phase estimation and investi-
gates its effects on single-channel enhancement, time-invariant
and time-varying beamforming, and post-filtering. We perform
speech enhancement in the complex domain [18], more specifi-
cally via complex spectral mapping [19], [20], which was origi-
nally proposed to deal with single-channel speech enhancement
in anechoic conditions. This paper goes beyond previous work
on complex spectral mapping by using a new loss function and
addressing multi-channel speech enhancement and robust ASR.
Our contributions can be summarized as follows. First, we intro-
duce a magnitude-domain loss for complex spectral mapping,
which leads to better enhancement results especially in terms of
PESQ. Second, complex spectra produced by single- and multi-
channel complex spectral mapping are found to produce slightly
better signal statistics for beamforming than magnitude-domain
mask estimates, especially in relatively matched conditions.
Third, a novel way of using estimated complex spectra for time-
varying beamforming is proposed. Fourth, the proposed system
advances state-of-the-art enhancement and recognition results
on the single-, two- and six-microphone tasks of CHiME-4,
without using any model ensemble as employed in the previous
best results reported in [21] and [22] that combines multiple
frontends and backends. It should be noted that preliminary
versions of this study [13], [23]–[26] have been presented in
ICASSP 2017 and 2018, but this paper employs complex spectral
mapping for the first time and obtains much better results.

The rest of this paper is organized as follows. We describe
our physical model and objectives in Section II, and present the
proposed algorithms in Section III. Experimental setup and eval-
uation results are presented in Section IV and V. Conclusions
are made in Section VI.

II. PHYSICAL MODEL AND OBJECTIVES

Given a P -microphone time-domain signal y[n] ∈ RP×1

recorded in a reverberant and noisy environment, the physical
model in the short-time Fourier transform (STFT) domain is
formulated as:

Y (t, f) = c (f ; q)Sq (t, f) +H (t, f) +N (t, f)

= S (t, f) + V (t, f) (1)

where Sq(t, f) ∈ C is the complex STFT coefficient of the
direct-path signal captured by a reference microphone q at time
t and frequency f , c(f ; q) ∈ CP×1 denotes the relative transfer
function with the qth element being one, and c(f ; q)Sq(t, f),
H(t, f), N(t, f) and Y (t, f) ∈ CP×1 respectively represent
the STFT vectors of the direct-path signal, its reverberation,
reverberant noise and captured mixture. The target speaker is
assumed still (non-moving) within each utterance.

Our study proposes multiple deep learning based algorithms
to extract the direct-path signal Sq from the mixture Yq captured
at reference microphone q, with or without exploiting spatial
information contained in Y . We assume offline processing sce-
narios. We normalize the sample variance of each time-domain
mixture to one before any processing. This normalization can
deal with random gains in input signals, and hence would be
important for mapping-based methods for speech enhancement.
In addition, our network architecture (see Fig. 2) has short-cut

connections from network input to output. They can help map-
ping based methods determine the gain of target speech.

The proposed algorithms are designed such that the models,
once trained, can be readily applied to arrays with any number of
microphones arranged in an unknown geometry. This flexibility
is useful for cloud-based services, where client devices vary
in the number of microphones and microphone geometry, but
poses challenges for supervised learning based approaches, as
they require fixed input and output dimensions and may have
limited generalization capability to a new array geometry.

In the remainder of this paper, we refer to S(t, f) =
c(f ; q)Sq(t, f) as the target speech to extract, and V (t, f) =
H(t, f) +N(t, f) as the non-target signal to remove.

III. PROPOSED ALGORITHMS

Fig. 1 shows two DNNs in the proposed system. The first
one performs single-channel complex spectral mapping based
enhancement. The enhancement results are utilized to compute
signal statistics for an MVDR beamformer. The beamforming
results are combined with the mixture for the second DNN to
perform multi-channel complex spectral mapping based post-
filtering so that spectral and spatial information can be integrated
for DNN training. A second beamformer is then computed for
speech recognition, as the second DNN can produce better signal
statistics for beamforming after leveraging spatial information.
In Fig. 1, the multiple MVDR beamformers after the first DNN
differ in the choice of reference microphone. This is because the
direct-path signals at different microphones vary a lot in terms
of phase, and we need to set each one of the microphones as the
reference in MVDR beamforming to estimate each direct-path
signal.

A. Single-Channel Complex Spectral Mapping

Following [18]–[20], we train a DNN to directly predict the RI
components of the direct-path signal from noisy and reverberant
ones. We use the following loss function for model training

LRI =
∥
∥
∥R̂p − Real (Sp)

∥
∥
∥
1
+
∥
∥
∥Îp − Imag (Sp)

∥
∥
∥
1

(2)

where p ∈ {1, . . . , P} indexes microphones, R̂p and Îp are the
predicted RI components, and Real(·) and Imag(·) extract the
RI components. The enhancement result at microphone p is
computed as Ŝ

(k)
p = R̂

(k)
p + jÎ

(k)
p , where j is the imaginary

unit. As the overall system has two DNNs (see Fig. 1), we use
superscript k ∈ {1, 2} to denote that the output is produced by
the kth DNN.

Following recent studies [19], [27] that include a magnitude-
domain loss for complex spectra approximation, we design the
following loss function

LRI+Mag = LRI +

∥
∥
∥
∥

√

R̂2
p + Î2p − |Sp|

∥
∥
∥
∥
1

(3)

The motivation is that using LRI alone does not lead to
satisfactory magnitude estimates, as the estimated magnitudes
need to compensate for the estimation error made on phase. A
major difference from [19], [27] is that we do not perform power
or logarithmic compression on the magnitude spectra for loss

Authorized licensed use limited to: The Ohio State University. Downloaded on July 13,2020 at 23:51:41 UTC from IEEE Xplore.  Restrictions apply. 



1780 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

Fig. 1. System diagram of overall system for single- and multi-channel speech enhancement. There are two DNNs, one taking in single-channel and the other

multi-channel information for speech enhancement. The superscripts in Ŝ
(1)
p and B̂F

(1)

p , and Ŝ
(2)
p and B̂F

(2)

p for p ∈ {1, . . . , P} respectively denote whether
they are produced by the first and the second DNN. The MVDR beamformer can be time-invariant (TI-MVDR) or time-varying (TV-MVDR). Detailed DNN
architecture is shown in Fig. 2.

computation. This way, the DNN is always trained to estimate a
spectrogram that has consistent phase and magnitude structure,
and hence would likely produce a consistent STFT spectrogram
at run time [17].

B. Multi-Channel Complex Spectral Mapping

After obtaining Ŝ(1)
p at each microphone using single-channel

complex mapping, we directly use the estimated complex spec-
tra, rather than estimated T-F masks as a weighting mechanism
[6], [9], [11]–[14], for covariance matrix computation

Φ̂(s) (f) =
1

T

T∑

t=1

Ŝ (t, f) Ŝ(t, f)H (4)

Φ̂(v) (f) =
1

T

T∑

t=1

V̂ (t, f) V̂ (t, f)H (5)

where V̂ = Y − Ŝ and T is the total number of frames in the
utterance. The rationale is that the estimated complex spectra
produced by complex spectral mapping are expected to have
better phase than the mixture, and hence could lead to better
estimation of covariance matrices.

The relative transfer function is then computed as

r̂ (f) = P
{

Φ̂(s) (f)
}

ĉ (f ; q) = r̂ (f) /r̂q (f) (6)

whereP{·} extracts the principal eigenvector and r̂q(f) denotes
the qth element of r̂(f). Note that the speech covariance matrix,
if accurately estimated, is close to a rank-one matrix for still di-
rectional sources. Its principal eigenvector is hence a reasonable
estimate of the steering vector [11], [13], [3]. r̂(f) is then divided
by r̂q(f) to obtain the relative transfer function with respect
to microphone q. Without this operation, MVDR beamforming
would introduce a random complex gain at each frequency,
leading to speech distortion in the beamformed mixture.

A time-invariant MVDR (TI-MVDR) is then computed using

ŵ (f ; q) =
Φ̂(v)(f)−1ĉ (f ; q)

ĉ(f ; q)HΦ̂(v)(f)−1ĉ (f ; q)
(7)

The beamformed mixture is obtained as ̂BF q(t, f) = ŵ
(f ; q)HY (t, f).

The second DNN takes in the RI components of̂BF q and Yq to
predict the RI components of Sq. HerêBF q can be considered as
a spatial feature [28]–[32], to guide the DNN to extract a target
speech signal in a particular direction and with specific spectral
structure. In addition, it is in the complex domain, and therefore
could help improve phase estimation in addition to enhance
magnitude estimation. In contrast, previously proposed spatial
features, such as inter-channel phase differences (IPDs) [33], co-
sine and sine IPDs [29], [34], target direction compensated IPDs
[25], and the magnitudes of beamformed mixtures [32], are in the
real domain and only used for improving magnitude estimation.

Here we consider MVDR beamforming, as it is expected
to introduce very little speech distortion. Such beamform-
ing results could help the second DNN better predict the
direct-path signal. Other beamformers, such as multi-channel
Wiener filter (MCWF) and generalized eigenvector (GEV)
beamforming, essentially use the same projection direction (i.e.
Φ̂(v)(f)−1ĉ(f ; q)) as MVDR, but use different spectral gains for
further noise suppression [3]. Such gains, which are real-valued
for MCWF and complex-valued for GEV, introduce speech
distortion. In addition, such gains are typically computed based
on signal statistics, but better gains can likely be produced using
DNNs. As a result, our study considers distortionless MVDR
beamforming, and uses DNN-based post-filtering for further
noise suppression.

C. Adaptive Covariance Matrix Computation

Since the target speaker is typically still within each utterance,
it is reasonable to estimate RTF from Φ̂(s)(f) using all the
frames within an utterance. Clearly, more frames in this case lead
to more accurate RTF estimation for a still directional source.
However, even if the target speaker is still, the spatial coherence
of environmental noise and room reverberation can be highly
time-varying in real-world environments such as the BUS and
CAF conditions in the CHiME-4 corpus. It is hence necessary
to estimate noise covariance matrix per T-F unit or per block of
units rather than per frequency for better noise suppression.
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We follow a recently proposed algorithm [35] to estimate
time-varying noise covariance matrices. In [35], per-frequency
T-F mask based covariance matrix is considered as a prior,
and under a maximum a posterior framework, the time-varying
spatial covariance matrix at each T-F unit is computed as a
weighted combination of the prior and the summation of the
mask-weighted mixture outer products in each non-overlapping
block of T-F units. Specifically, we compute the time-varying
noise covariance matrix in the following way

Φ̂(v) (t, f) = (1− α)

∑t+Δ
t−Δ V̂ (t, f) V̂ (t, f)H

trace
(
∑t+Δ

t−Δ V̂ (t, f) V̂ (t, f)H
)/

P

+ α
Φ̂(v) (f)

trace
(

Φ̂(v) (f)
)/

P
(8)

where α is empirically set to 0.5 and Δ is half the window
size in frames. Different from [35], we use estimated complex
spectra produced by complex spectral mapping, rather than esti-
mated masks in a mask-weighted fashion, for covariance matrix
computation. This could result in more accurate covariance
estimation. In addition, we normalize the energy levels before
the weighted sum to eliminate the effects of time-varying PSD
and focus on the weighted summation of spatial coherences,
as noise PSD cancels out in MVDR beamforming. Without the
energy normalization, the summation can be easily dominated
by one of the two terms, since noise PSD can be highly non-
stationary. We emphasize that the first term is computed based
on a small context window of 2Δ + 1 frames, while the second
term based on all the frames. This way, the computation of
the noise covariance matrix can leverage long-term stationary
information and, at the same time, adapt to sudden changes of
noise characteristics. Note that the short-term noise covariance
matrix needs an accurate complex spectrum estimate, which is
obtained using complex spectral mapping.

A time-varying MVDR (TV-MVDR) beamformer is then
computed as

ŵ (t, f ; q) =
Φ̂(v)(t, f)−1ĉ (f ; q)

ĉ(f ; q)HΦ̂(v)(t, f)−1ĉ (f ; q)
(9)

and the beamforming result is computed using ̂BF q(t, f) =
ŵ(t, f ; q)HY (t, f).

After cross validation, Δ is set to 0 for the two-microphone
and 3 for the six-microphone recognition task of CHiME-4.
We found that setting Δ to 0 always produces more noise
suppression and the beamformed signals always sound better,
simply because we use fine-grained T-F unit level noise estimates
produced by DNN to compute Φ̂(v)(t, f). However, such noise
estimates may not be perfectly accurate. In the six-channel case,
MVDR has more degrees of freedom to minimize the energy of
such unperfect noise estimates, but at a risk of introducing more
speech distortion. We therefore slightly increase Δ to have more
stable Φ̂(v)(t, f) and sacrifice noise reduction for the reduction
of speech distortion. In the two-microphone case, even if we set
Δ to 0, the noise reduction is limited (it only has one degree

of freedom for nosie reduciton) and hence speech distortion is
little.

IV. EXPERIMENTAL SETUP

We evaluate our algorithms on the enhancement and recog-
nition tasks of the publicly-available CHiME-4 corpus [10], a
popular dataset featuring one-, two- and six-microphone tasks
designed for robust ASR. Our study always considers the direct
outputs from DNN (i.e. Ŝ(1)

q and Ŝ
(2)
q ) for speech enhance-

ment, and beamforming results (i.e.̂BF
(1)

q and̂BF
(2)

q ) for speech
recognition, as it is well-known that beamforming produces less
speech distortion, which is important for modern ASR systems,
but also less noise reduction, compared to deep learning based
masking and mapping. This section details the CHiME-4 dataset,
our proposed frontend and several baseline frontends, and our
ASR backend.

A. CHiME-4 Corpus

The CHiME-4 corpus [10] contains six-microphone simu-
lated and real recordings. The microphones are mounted on a
tablet, with five of them facing the front and the other one facing
the rear. This corpus contains recordings from four real-world
environments (including street, pedestrian areas, cafeteria and
bus), exhibiting large training and testing mismatches in terms
of speaker, noise and spatial characteristics, and around 12% of
the real recordings suffer from microphone failures. The training
data includes 7,138 simulated and 1,600 recorded utterances,
the validation data contains 1,640 simulated and 1,640 recorded
utterances, and the test data consists of 1,320 simulated and
1,320 recorded utterances. Each of the three recorded datasets is
constructed using four different speakers. It should be noted that
reverberation is weak in the CHiME-4 corpus, partly because
the considered environments are not very reverberant and the
speaker-microphone distance is not large for a hand-held posi-
tion. The single-channel task uses one of the six microphones
for testing. For the two-microphone task, two of the front five
channels that do not suffer from microphone failure are selected
for each utterance for testing. To address microphone failures
in the real recordings of the six-microphone task, we first select
a microphone signal that is most correlated with the other five,
and then throw away the signals with less than 0.3 correlation
coefficients with the selected signal.

B. Frontend Enhancement System

We use all the simulated signals in the training set to train our
frontends, and report the enhancement results on the simulated
test set. We consider the clean signal captured by the fifth micro-
phone as the reference for metric computation, since it exhibits
the highest signal-to-noise ratio among all the microphones.

The two DNNs in Fig. 1 are trained sequentially. After training
the first DNN, we use it to generate for each microphone a
beamformed signal based on TI-MVDR and a random number
of microphones, leading to 7,138∗6 beamformed signals in
total. Each beamformed signal is combined with the mixture
signal to train the second DNN. This way, the second DNN
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Fig. 2. Network architecture for predicting the RI components of Sq from the
RI components of Yq and B̂Fq . For single-channel processing, the network
only takes single-channel information as its inputs. The tensor shape after
each encoder-decoder block is in the format: featureMaps × timeSteps × fre-
quencyChannels. Each of Conv2D, Deconv2D, Conv2D + IN + Swish, and
Deconv2D+ IN+Swish blocks is specified in the format: kernelSizeTime× ker-
nelSizeFreq, (stridesTime, stridesFreq), (paddingsTime, paddingsFreq), fea-
tureMaps. Each DenseBlock(g) contains five Conv2D + IN + Swish blocks
with growth rate g. The tensor shape after each TCN block is in the format:
featureMaps × timeSteps. Each IN + Swish + Conv1D block is specified in the
format: kernelSizeTime, stridesTime, paddingsTime, dilationTime, featureMaps.

can deal with the TI-MVDR results produced by using up to six
microphones. In our experiments, we also tried using TV-MVDR
to produce beamformed signals for training the second DNN.
The performance is however not clearly better. This could be
because TI-MVDR uses the same filter per frequency along time
and can therefore produce stable spectral patterns conducive to
training convolutional networks.

The network architecture for enhancement is shown in Fig. 2.
The network is a temporal convolutional network (TCN) [36]
with encoder-decoder structure similar to U-Net [37], skip

connections, and dense blocks [38], [39]. The motivation for
this network design is that TCN can model long-term temporal
dependencies through large receptive fields achieved via dilated
convolution, U-Net can maintain fine-grained local spectral
structure as suggested in image semantic segmentation [37],
and dense blocks can increase feature reuse and improve the
discriminative power of the network [38]. A similar architecture
was recently used in a state-of-the-art speaker separation al-
gorithm [40]. The encoder contains one two-dimensional (2D)
convolution, and six convolutional blocks, each with 2D con-
volution, Swish non-linearity and instance normalization (IN),
for down-sampling. The decoder includes six blocks of 2D
deconvolution, Swish and IN, and one 2D deconvolution, for
up-sampling. The TCN contains two layers, each of which has
six dilated convolutional blocks. We use two one-dimensional
(1D) depth-wise separable convolution in each dilated convolu-
tional block to reduce the number of parameters. Each model
has around 13 million parameters.

The frame length is 32 ms and frame shift 8 ms. Square-root
Hann window is used as the analysis window. The sampling rate
is 16 kHz. A 512-point discrete Fourier transform is used to
extract complex STFT spectrograms. No global mean-variance
normalization is performed on the input features. For complex
spectral mapping, linear activation is used in the output layer
to produce estimated RI components. As the CHiME-4 dataset
exhibits diverse gains at different microphones, we separately
normalize each of the six microphone signals to have unit sample
variance before any frontend processing.

We use PESQ, STOI, scale-invariant signal-to-distortion ratio
(SI-SDR) [41], and BSS-Eval SDR as the evaluation metrics.
PESQ and STOI strongly correlate with the accuracy of esti-
mated magnitude. On the other hand, SI-SDR is a time-domain
metric closely reflecting the quality of estimated magnitude and
phase, meaning that magnitude estimates need to compensate
for the inaccuracy of phase estimates in order to produce a high
SI-SDR.

C. Baseline Frontend Systems

We consider four single-channel benchmarks listed in Ta-
ble I to demonstrate the effectiveness of single-channel complex
spectral mapping based speech enhancement. The four bench-
marks are based on masking and mapping based magnitude spec-
trum approximation (MSA) [1] and phase-sensitive spectrum
approximation (PSA) [42]. All of them use the same network
architecture as shown in Fig. 2. The main differences lie in the
number of input and output feature maps, and the activation func-
tion in the output layer. In LMSA−Masking and LPSA−Masking,
T b
a(·) = max(min(·, b), a) truncates the estimated masks to the

range [a, b]. β is set to 5.0 in LMSA−Masking and γ set to 1.0 in
LPSA−Masking.

In addition, we investigate the effectiveness of the single-
channel models for TI-MVDR beamforming. One way is to ap-
ply each single-channel model to each microphone signal to ob-
tain Ŝ and V̂ , perform TI-MVDR beamforming using Eq. (4)–
(7), and compare their ASR performance. This comparison
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TABLE I
SUMMARY OF SINGLE-CHANNEL FRONTENDS

can show the effectiveness of single-channel phase estimation
when its result is used for beamforming.

We also evaluate the mask weighting technique for collect-
ing statistics for TI-MVDR beamforming, based on the MSA-
Masking and PSA-Masking models. Following [6], [9], [12],
[13], we compute the covariance matrices in the following way

Φ̂(d) (f) =
1

T

T∑

t=1

η(d) (t, f)Y (t, f)Y (t, f)H , (10)

where d ∈ {s, v}, and η(d) is computed as

η(d) = median

⎛

⎝

T β
0

(

M̂
(d)
1

)

T β
0

(

M̂
(s)
1

)

+ T β
0

(

M̂
(v)
1

) , . . . ,

T β
0

(

M̂
(d)
P

)

T β
0

(

M̂
(s)
P

)

+ T β
0

(

M̂
(v)
P

)

⎞

⎠ (11)

for MSA-Masking and as

η(d) = median
(

T γ
0

(

Q̂
(d)
1

)

, . . . , T γ
0

(

Q̂
(d)
P

))

(12)

for PSA-Masking. β in Eq. (11) and γ in Eq. (12) are respec-
tively set to 5.0 and 1.0. We emphasize that the six-channel
task of CHiME-4 contains recordings with microphone failure.
According to [9], the median pooling operation is an effective
way of addressing microphone failure. Thus, we also compute
covariance matrices based on the estimated spectra produced by
complex spectral mapping in the following way

Φ̂(s) (f) =
1

T

T∑

t=1

η(s) (t, f)Ŝ (t, f) Ŝ(t, f)H (13)

Φ̂(v) (f) =
1

T

T∑

t=1

η(v) (t, f)V̂ (t, f) V̂ (t, f)H (14)

where η(s) and η(v) are computed as

η(s) = median
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∣ŜP |+| V̂P

∣
∣
∣

⎞

⎠ (15)

η(v) = median
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⎞

⎠ (16)

Different from Eq. (10), Eqs. (13) and (14) use estimated
speech and noise complex spectra for covariance matrix compu-
tation, while Eq. (10) uses mixture complex spectra. Note that we
only apply this technique to the six-microphone recognition task,
as the two-microphone recognition task and the enhancement
task do not contain signals with microphone failure.

D. Backend Recognition System

Our ASR backend is a DNN-HMM hybrid system. The acous-
tic model is trained using both simulated and recorded noisy
utterances in the training set. The input features to the acous-
tic model are 80-dimensional logarithmically compressed Mel
filterbank feature together with its delta and double delta. The
acoustic model is a wide-residual BLSTM network (WRBN)
[43] trained with utterance-wise recurrent dropout [26]. At
test time, we perform lattice re-scoring using the task-standard
trigram, five-gram and RNN language models, and an LSTM
language model (LSTMLM) recently proposed in [44]. The
LSTMLM re-scored lattice is used for unsupervised speaker
adaptation. We apply iterative speaker adaptation proposed in
[26] for three iterations, each of which uses the LMSTLM
re-scored lattice to fine-tune a linear input layer [45] prepended
to the acoustic model.

Since the ASR system uses different frame and shift sizes from
speech enhancement frontends, we perform signal re-synthesis
before extracting features for recognition.

V. EVALUATION RESULTS

We first report speech enhancement performance and then
recognition results on the CHiME-4 dataset.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 13,2020 at 23:51:41 UTC from IEEE Xplore.  Restrictions apply. 



1784 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE II
AVERAGE SI-SDR (dB), PESQ, AND STOI (%) PERFORMANCE OF DIFFERENT

METHODS ON CHANNEL 5 OF CHIME-4 (SINGLE-CHANNEL)

TABLE III
AVERAGE SI-SDR (dB), PESQ, AND STOI (%) OF DIFFERENT METHODS ON

CHANNEL 5 OF CHIME-4 (SIX-CHANNEL)

A. Enhancement Performance

Table II compares the enhancement performance of
single-channel complex-domain mapping with single-channel
magnitude-domain masking and mapping, along with ora-
cle magnitude-domain masking using the spectral magnitude
mask (SMM) [1] and phase-sensitive mask (PSM) [42]. We
observe better SI-SDR, PESQ and STOI results using the
model trained with LRI and LRI+Mag than with LMSA−Masking,
LMSA−Mapping, LPSA+Masking and LPSA+Mapping, indicating
the effectiveness of complex-domain estimation. Compared with
LRI, LRI+Mag yields much better PESQ (3.16 vs. 2.96), slightly
better SI-SDR (15.8 vs. 15.5 dB), and marginally better STOI
(95.4% vs. 95.2%). This suggests the importance of magnitude
estimation for PESQ. The following experiments use LRI+Mag

as the default loss function.
Table III reports the performance of multi-channel enhance-

ment. One straightforward approach, denoted as ̂BF
(1)

q + post-
filtering, is to first utilize a single-channel model listed in Table II
to obtain̂BF

(1)

q via Eqs. (4)–(7) (see also Fig. 1), and then apply
the single-channel model again on̂BF

(1)

q for post-filtering. Since
̂BF

(1)

q is expected to contain low speech distortion, it can be
used as the input to the single-channel model for post-filtering,
although the model is trained on noisy mixtures. Clearly, us-
ing ̂BF

(1)

q + post-filtering obtained via the model trained with
LRI+Mag leads to the best performance. This is consistent with
the single-channel results in Table II. Another approach, denoted
as Ŝ

(2)
q (see Fig. 1), combines Yq and ̂BF

(1)

q computed from
Eqs. (4)–(7) to train another DNN for multi-channel complex

TABLE IV
COMPARISON OF AVERAGE SI-SDR (dB), SDR (dB), PESQ, AND STOI (%) OF

DIFFERENT APPROACHES ON CHANNEL 5 OF CHIME-4 (SIX-CHANNEL)

TABLE V
COMPARISON OF ASR PERFORMANCE (%WER) WITH OTHER APPROACHES

(SINGLE-CHANNEL)

spectral mapping. Clearly better results are observed over̂BF
(1)

q

+ post-filtering, but at the expense of using one more DNN. Note
that both of them show clear improvements over single-channel
enhancement.

Table IV compares the proposed approach with other com-
petitive approaches in the literature. Bu et al. [46] utilize esti-
mated masks produced by BLSTM based single-channel mask-
ing to compute the signal statistics for MVDR beamforming
and magnitude-domain post-filtering. Tu et al. [47] combine
the estimated mask produced by complex Gaussian mixture
models (CGMM) with the estimated ideal ratio mask (IRM)
provided by an LSTM for masking-based block-wise MVDR,
and use another LSTM for monaural magnitude mapping based
post-filtering for further noise reduction. In [48], Shimada et al.
combine CGMM based spatial clustering and multi-channel
non-negative matrix factorization based spectral modeling to
estimate time-varying speech and noise covariance matrices for
time-varying beamforming. As can be observed from Table IV,
substantially better enhancement results are obtained by our
approach over the comparison approaches.

B. Recognition Performance

Table V reports ASR performance on the single-channel task
of CHiME-4. Our single-channel system directly uses unpro-
cessed noisy signals for recognition and obtains 6.82% WER
after lattice-rescoring and iterative speaker adaptation. This re-
sult is significantly better than the previous best WERs reported
by Du et al. [21], and Wang and Wang [26]. This result suggests
that our backend is a strong one and can be very indicative at
measuring the effectiveness of frontend enhancement for recog-
nition. It should be noted that we tried to use the enhancement
results of our single-channel frontends for recognition. The ASR
performance is however worse than using unprocessed mixtures.
This is likely due to the speech distortion introduced by DNN
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TABLE VI
ASR PERFORMANCE (%WER) OF USING VARIOUS SINGLE- AND

MULTI-CHANNEL MODELS FOR TI- AND TV-MVDR, AND USING

TRIGRAM LANGUAGE MODEL FOR DECODING

based enhancement and the large mismatch between the training
and test conditions of CHiME-4.

Table VI presents the ASR results of TI- and TV-MVDR
using Ŝ(1) and Ŝ(2) produced by the two DNNs, based on the
task-standard trigram language model. We first go through the
results by using the two-microphone task as an example. Entries
1–8 are obtained by using various single-channel models to
compute the statistics for TI-MVDR, either by using Eqs. (4) and
(5) or Eq. (10) for covariance matrix computation. Among these
entries, we found that entries 7 and 8 obtain overall better WER,
especially on the simulated test data. On the real test set, slightly
better WER is observed. These results indicate the effectiveness
of DNN based phase estimation for beamforming, especially
when training and testing conditions are relatively matched.
Entry 9 is obtained by using multi-channel complex spectral
mapping to compute Ŝ(2), and then deriving a TI-MVDR (see
Fig. 1 for more details). Slightly better WER is observed over
entry 8, suggesting that the second DNN leads to better signal
statistics for beamforming than the first one. Entry 10 uses Ŝ(2)

to compute a TV-MVDR. Clearly better WER is observed over
entry 9, indicating the effectiveness of using estimated complex
spectra to compute time-varying noise covariance matrices for
beamforming. On the six-microphone task, a similar trend to
that in entries 3–8 is observed from entries 13–18. However,
entry 18 shows slightly worse recognition performance than
entry 12 (5.69% vs. 5.55% WER), likely due to the microphone
failure in the six-microphone task. In entry 19, we introduce a
median pooling mechanism shown in Eqs. (13) and (14) for the

TABLE VII
COMPARISON OF ASR PERFORMANCE (%WER) WITH

OTHER APPROACHES (TWO-CHANNEL)

TABLE VIII
COMPARISON OF ASR PERFORMANCE (%WER) WITH OTHER

APPROACHES (SIX-CHANNEL)

proposed approach to deal with microphone failure. Slight but
consistent improvements are observed over entries 12 and 18 on
all the four subsets. Comparing entry 20 with 19, we also observe
better performance by using Ŝ(2) rather than Ŝ(1) for TI-MVDR.
Using TV-MVDR in entry 21 leads to further improvement. Note
that in entry 21, Φ̂(v)(f) in Eq. (8) is computed based on Eq. (14).

Table VII and Table VIII further apply five-gram, RNN and
LSTM language models for lattice re-scoring, and perform
iterative speaker adaptation for the two- and six-microphone
tasks, based respectively on the TV-MVDR frontends produced
in the entry 10 and entry 21 of Table VI.

Table V, Table VII and Table VIII compare the proposed
system with other state-of-the-art systems. Our system advances
state-of-the-art ASR results on all the tasks. The system in Du
et al. [21] (and their journal version [22]) was the winning
solution in the CHiME-4 challenge, and produces the best WER
results reported to date. It ensembles one DNN and four CNN
based acoustic models as the backend, using a combination of
log Mel filterbank, fMLLR and i-vectors as the input features.
Their frontend uses T-F masking based MVDR beamforming,
where the estimated masks are combined on the basis of an
unsupervised CGMM model, a supervised LSTM based IRM
estimator, and frame-level voice activity detection results pro-
duced by a speech recognizer. An LSTM language model is used
for lattice re-scoring. As can be seen, their frontend and backend
are both ensembles of multiple models. In contrast, our system
does not use any model ensemble, and obtains better ASR results
on all the three tasks (6.82% vs. 9.15%, 3.19% vs. 3.91%, and
1.99% vs. 2.24% WER). These amount to 25.5%, 18.4%, and
11.2% relative WER reductions for the single-, two-, and six-
microphone tasks, respectively. The improvement is especially
large on the simulated test data of the two- and six-microphone
tasks (2.53% vs. 5.74%, and 1.49% vs. 2.12% WER), indicating
that the proposed system is particularly effective when training
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and testing conditions are not very different. Another system
worth mentioning is a recently-proposed CHiME-4 baseline [44]
available in Kaldi. The frontend is a masking based generalized
eigenvector beamformer based on a BLSTM, the acoustic model
is a time-delay DNN trained with a lattice-free version of the
maximum mutual information criterion, and an LSTM language
model, which is the one we use in our study, is trained for lattice
re-scoring. Our system obtains much better ASR results, demon-
strating the effectiveness of the proposed frontend and backend.

As can be seen from entries 8 and 9, and entries 19 and 20,
Ŝ(2) leads to slightly better beamforming over Ŝ(1). This is
simply because Ŝ(2) is better than Ŝ(1) by using multi-channel
information. As shown in Table II and Table III, Ŝ(2)

q is 6.2 dB

SI-SDR better than Ŝ(1)
q (22.0 dB vs. 15.8 dB) in the six-channel

case. Following the suggestion from an anonymous reviewer,
we re-compute TI-MVDR beamformers using Ŝ(2), and then
feed the beamforming results and the mixture into the second
DNN to obtain Ŝ(3). Ŝ(3)

q obtains 22.3 dB SI-SDR, 22.8 dB
SDR, 3.69 PESQ and 98.6% STOI, which are slightly better
than the Ŝ

(2)
q results listed in Table IV. In addition, using Ŝ(3)

for TV-MVDR as is done in entries 10 and 21 leads to 7.69% and
4.95% WER on the real test set of the two- and six-microphone
recognition tasks, which are slightly better than the 7.72% and
5.06% WER results.

VI. CONCLUSIONS

We have proposed a complex spectral mapping approach for
single- and multi-channel speech enhancement. Experiments on
CHiME-4 show that complex spectral mapping leads to better
single-channel enhancement, beamforming and post-filtering,
over magnitude-domain masking and mapping. Our adaptive
noise covariance matrix estimation yields further ASR improve-
ments over TI-MVDR, especially on the two-channel task.
State-of-the-art results have been obtained on the enhancement
and recognition tasks of the CHiME-4 corpus. Future research
will consider time-domain and real-time processing, reducing
the number of model parameters and extensions to multi-speaker
separation.
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