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Speech Recognition System

e Goal
* Converting speech to text

* A Mathematical Perspective
w=argmax{P(wlY)}
" or

w = argmax{PY Iw)P(w)}
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GMM-HMM Model

e GMM and HMM

e GMM is short for Gaussian Mixture Model, and HMM is
short for Hidden Markov Model.

* Predecessor of DNNSs

e Before Deep Neural Networks (DNNs), the most commonly
used speech recognition systems were consisted of GMMs

and HMMs.



GMM-HMM Model

 HMM
* HMM is used to deal with the temporal variability of speech.

* GMM

* GMM is used to represent the relationship between HMM
states and the acoustic input.



GMM-HMM Model

* Features

* The features is typically represented by concatenating Mel-
frequency cepstral coefficients (MFCCs) or perceptual linear
predictive coefficients (PLPs) computed from the raw
waveform and their first- and second-ordertemporal
differences.



GMM-HMM Model

* Shortcoming

* GMM-HMM models are statistically inefficient for modeling
data that lie on or near a nonlinear manifold in the data

space.

* For example, modeling the set of points that lie very close to
the surface of a sphere.
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Training Deep Neural Networks

* Deep Neural Network (DNN)

* ADNN is a feed-forward, artificial neural network that has

more than one layer of hidden units between its inputs and
Its outputs.

* With nonlinear activation functions, DNN is able to model an

arbitrary nonlinear function (projection from inputs to
outputs). ']

[*] Added by the presenter.



Training Deep Neural Networks

 Activation Function of the Output Units

* The activation function of the output units is “softmax”
function.

* The mathematical expression is as follows.

o exp(x;)
P Zexp(xk)




Training Deep Neural Networks

* Objective Function

* When using the softmax output function, the natural
objective function (cost function) C is the cross-entropy

between the target probabilities d and the outputs of the
softmayx, p.

* The mathematical expression is as follows.

C :de logp,
J



Training Deep Neural Networks

* Weight Penalties and Early Stopping

* To reduce overfitting, large weights can be penalized in
proportion to their squared magnitude, or the learning can
simply be terminated at the point which performance on a
held-out validation set starts getting worse.



Training Deep Neural Networks

* Overfitting Reduction

* Generally speaking, there are three methods.

* Weight penalties and early stopping can reduce the

overfitting but only by removing much of the modeling
powetr.

e Very large training sets can reduce overfitting but only by
making training very computationally expensive.

* Generative Pretraining
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Generative Pretraining

* Purpose

* The multiple layers of feature detectors (the result of this
step) can be used as a good starting point for a
discriminative “fine-tuning” phase during which
backpropagation through the DNN slightly adjusts the
weights and improves the performance.

* In addition, this step can significantly reduce overfitting.



Generative Pretraining

* Restricted Boltzmann Machine (RBM)

* RBM consists of a layer of stochastic binary “visible” units
that represent binary input data connected to a layer of
stochasticbinary hidden (latent) units that learn to model
significant nonindependencies between the visible units.

* There are undirected connections between visible and
hidden units but no visible-visible or hidden-hidden

connections.



Generative Pretraining

* Restricted Boltzmann Machine (RBM) (Cont’d)
e The framework of an RBM is shown below.

Hidden layer

Visible layer

From: Slides in CSE5526 Neural Networks
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Generative Pretraining

* Restricted Boltzmann Machine (RBM) (Cont’d)

* RBM uses a single set of parameters, W, to define the joint
probability of a vector of values of the observable variables,
v, and a vector of values of the latent variables, h, via an
energy function, E.

| B
p(v,h;W):—e E(v,h,W),Zzze EW' W)
Z v!hl

Ev,)== 3 av,.— Y, bh =Y vhw,
[,j

ievisible jevisible



Generative Pretraining

* Restricted Boltzmann Machine (RBM) (Cont’d)

* The probability that the network assigns to a visible vector, v,
Is given by summing over all possible hidden vectors.

[ G
poy= L3 o
25

* The derivative of the log probability of a training set with
respect to a weight is surprisingly simple. The angle brackets
denote expectations under the corresponding distribution.

1 i dlog p(v")
N

5 =<Vl >, —<Vih, >
n=1 sz

i"7j 7 model



Generative Pretraining

* Restricted Boltzmann Machine (RBM) (Cont’d)
* The learning rule is thus as follows.

Aw, =<V, >, —<Vvih; >, ..)

data

* A betterlearning procedure is contrastive divergence (CD),
which is shown below. The subscript “recon” denotes a step
in CD when the states of visible units are assigned O or 1
according to the current states of the hidden units.

data < Vihj >rec0n)

Aw, =€(<vh, >



Generative Pretraining

* Modeling Real-Valued Data

* Real-valued data, such as MFCCs, are more naturally
modeled by linear variables with Gaussian noise and the
RBM energy function can be modified to accommodate such
variables, giving a Gaussian-Bernoulli RBM (GRBM).

N2
O 2 0

jehid ij



Generative Pretraining

 Stacking RBMs to Make a Deep Belief Network

* After training an RBM on the data, the inferred states of the
hidden units can be used as data for training another RBM
that learns to model the significant dependencies between
the hidden units of the first RBM.

* This can be repeated as many times as desired to produce
many layers of nonlinear feature detectors that represent
progressively more complex statistical structure in the data.



Generative Pretraining

 Stacking RBMs to Make a Deep Belief Network (Cont’d)

GRBM

opy

RBM

RBM

Copy

From: The paper
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Generative Pretraining

* Interfacing a DNN with an HMM

* In an HMM framework, the hidden variables denote the
states of the phone sequence, and the “visible” variables
denote the feature vectors. [']

a a33 a4

Markov
Model
a12 a3 0 a34 e a45 C

Acoustic /! l: I: E \\
s;e:;gf:e ”‘bz(}ﬁ); ba(y2) '*b3(}’3) 3)4()’4) ‘{’40'5)

Y=y Oy, Uy, Oy, [
e A [*] Added by the presenter

From: Gales, Mark, and Steve Young. "The application of hidden Markov models in speech recognition.”
Foundations and trends in signal processing 1.3 (2008): 195-304.



Generative Pretraining

* Interfacing a DNN with an HMM (Cont’d)

* To compute a Viterbi alignment or to run the forward-
backward algorithm within the HMM framework, we require
the likelihood p(Acousticlnput | HMMstate).

* A DNN, however, outputs probabilities of the form
p(HMMstate | Acousticlnput).



Generative Pretraining

* Interfacing a DNN with an HMM (Cont’d)

* The posterior probabilities that the DNN outputs can be
converted into the scaled likelihood by dividing them by the
frequencies of the HMM states in the forced alignment that
is used for fine-tuning the DNN.

* Forced alignment is a procedure used to generate labels for
the training process. ']

[*] Added by the presenter



Generative Pretraining

* Interfacing a DNN with an HMM (Cont’d)

* All of the likelihoods produced in this way are scaled by the
same unknown factor of p(Acousticlnput).

* Although this appears to have little effect on some
recognition tasks, it can be important for tasks where

training labels are highly unbalanced.



Content

e Speech Recognition System

* GMM-HMM Model

* Training Deep Neural Networks
* Generative Pretraining

* Experiments

* Discussion



Experiments

* Phonetic Classification and Recognition on TIMIT

* The TIMIT data set is a relatively small data set which
provides a simple and convenient way of testing new
approaches to speech recognition.



Experiments

* Phonetic Classification and Recognition on TIMIT (Cont’d)

[TABLE 1] COMPARISONS AMONG THE REPORTED
SPEAKER-INDEPENDENT (SI) PHONETIC RECOGNITION

ACCURACY RESULTS ON TIMIT CORE TEST SET
WITH 192 SENTENCES.

METHOD PER

CD-HMM [26] 27.3%
AUGMENTED CONDITIONAL RANDOM FIELDS [26] 26.6%
RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27] 26.1%
BAYESIAN TRIPHONE GMM-HMM [28] 25.6%
MONOPHONE HTMS [29] 24.8%
HETEROGENEOUS CLASSIFIERS [30] 24.4%
MONOPHONE RANDOMLY INITIALIZED DNNs (SIX LAYERS) [13] 23.4%
MONOPHONE DBN-DNNSs (SIX LAYERS) [13] 22.4%
MONOPHONE DBN-DNNs WITH MMI TRAINING [31] 22.1%
TRIPHONE GMM-HMMs DT W/ BMMI [32] 21.7%
MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13] 20.7%

MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33]  20.5%

MONOPHONE CONVOLUTIONAL DNNs ON FBANK (THREE LAYERS)
(34] 20.0%

From: The paper



Experiments

* Bing-Voice-Search Speech Recognition Task

* This task used 24h of training data with a high degree of
acoustic variability caused by noise, music, side-speech,
accents, sloppy pronunciation, et al.

* The best DNN-HMM acoustic model achieved a sentence
accuracy of 69.6% on the test set, compared with 63.8% for a
strong, minimum phone error (MPE)-trained GMM-HMM
baseline.



Experiments

* Bing-Voice-Search Speech Recognition Task (Cont’d)

[TABLE 2] COMPARING FIVE DIFFERENT DBN-DNN ACOUSTIC MODELS WITH
TWO STRONG GMM-HMM BASELINE SYSTEMS THAT ARE DISCRIMINATIVELY
TRAINED. SI TRAINING ON 309 H OF DATA AND SINGLE-PASS DECODING WERE
USED FOR ALL MODELS EXCEPT FOR THE GMM-HMM SYSTEM SHOWN ON THE
LAST ROW WHICH USED SA TRAINING WITH 2,000 H OF DATA AND MULTIPASS

DECODING INCLUDING HYPOTHESES COMBINATION. IN THE TABLE, “40 MIX"
MEANS A MIXTURE OF 40 GAUSSIANS PER HMM STATE AND “15.2 NZ" MEANS
15.2 MILLION, NONZERO WEIGHTS. WERs IN % ARE SHOWN FOR TWO SEPA-
RATE TEST SETS, HUB500-SWB AND RTO03S-FSH.

WER
MODELING TECHNIQUE #PARAMS [10°] HUB5'00-SWB RT03S-FSH
GMM, 40 MIX DT 309H SI 294 23.6 274
NN 1 HIDDEN-LAYER X 4,634 UNITS 43.6 26.0 294
+ 2 X 5 NEIGHBORING FRAMES 451 224 25.7
DBN-DNN 7 HIDDEN LAYERS x 2,048 UNITS ~ 45.1 17.1 19.6
+ UPDATED STATE ALIGNMENT 451 16.4 18.6
+ SPARSIFICATION 15.2NZ 16.1 18.5
GMM 72 MIX DT 2000H SA 102.4 17.1 18.6

From: The paper
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Experiments

* Other Large Vocabulary Tasks

e Switchboard Speech Recognition Task (a corpus containing
over 300h of training data)

* Google Voice Input Speech Recognition Task
* YouTube Speech Recognition Task
* English Broadcast News Speech Recognition Task



Experiments

* Other Large Vocabulary Tasks (Cont’d)

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND

GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 52.3

From: The paper a6
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Discussion

e Convolutional DNNs for Phone Classification and
Recognition

* Although convolutional models along the temporal
dimension achieved good classification results on TIMIT
corpus, applying them to phone recognition is not
straightforward.

* This is because temporal variations in speech can be partially
handled by the dynamic programing procedure in the HMM
component and hidden trajectory models.



Discussion

* Speeding Up DNNs at Recognition Time

* The time that a DNN-HMM system requires to recognize 1s
of speech can be reduced from 1.6s to 210ms, without
decreasing recognition accuracy, by quantizing the weights
down to 8b using CPU.

* Alternatively, it can be reduced to 66ms by using a graphics
processing unit (GPU).



Discussion

* Alternative Pretraining Methods for DNNs

* It is possible to learn a DNN by starting with a shallow neural
net with a single hidden layer. Once this net has been trained

discriminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output units
and the whole network is again discriminatively trained. This
can be continued until the desired number of hidden layers

is reached, after which full backpropagation fine-tuning is
applied.



Discussion

e Alternative Pretraining Methods for DNNs (Cont’d)

* Purely discriminative training of the whole DNN from
random initial weights works well, too.

* Various types of autoencoder with one hidden layer can also
be used in the layer-by-layer generative pretraining process.



Discussion

* Alternative Fine-Tuning Methods for DNNs

* Most DBN-DNN acoustic models are fine-tuned by applying
stochastic gradient descent with momentum to small
minibatches of training cases.

* More sophisticated optimization methods can be used, but it
is not clear that the more sophisticated methods are
worthwhile since the fine-tuning process is typically stopped
early to prevent overfitting.



Discussion

* Using DBN-DNNs to Provide Input Features for GMM-HMM
Systems

* This class of methods use neural networks to provide the

feature vectors for the training process of the GMM in a
GMM-HMM system.

* The most common approach is to train a randomly initialized
neural net with a narrow bottleneck middle layer and to use
the activations of the bottleneck hidden units as features.



Discussion

* Using DNNs to Estimate Articulatory Features for Detection-
Based Speech Recognition

* DBN-DNNs are effective for detecting subphonetic speech
attributes (also known as phonological or articulatory
features).



Discussion

* Summary

* Most of the gain comes from using DNNs to exploit
information in neighboring frames and from modeling tied

context-dependent states.
* There is no reason to believe that the optimal types of

hidden units or the optimal network architectures are used,

and it is highly likely that both the pretraining and fine-
tuning algorithms can be modified to reduce the amount of

overfitting and the amount of computation.
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Introduction

* Background

* Although automatic speech recognition (ASR) systems have
become fairly powerful, the inherent variability can still pose
challenges.

* Typically, ASR systems that work well in clean conditions
suffer from a drastic loss of performance in the presence of
noise.



Introduction

* Feature-Based Methods

* This class of methods focus on feature extraction or feature
normalization.

* Feature-based techniques have the potential to generalize
well, but do not always produce the best results.



Introduction

* Two Groups of Feature-Based Methods

* When stereo 'l datais unavailable, prior knowledge about
speech and/or noise is used, such as spectral reconstruction
based missing feature methods, direct masking methods and
feature enhancement methods.

* When stereo data is available, feature mapping methods and
recurrent neural networks have been used.

[*] By stereo we mean noisy and the corresponding clean signals.



Introduction

* Model-Based Methods

* The ASR model parameters are adapted to match the
distribution of noisy or enhanced features.

* Model-based methods work well when the underlying
assumptions are met, but typically involve significant
computational overhead.

* The best performances are usually obtained by combining
feature-based and model-based methods.



Introduction

e Supervised Classification Based Speech Separation

* Stereo training data is also used by supervised classification
based speech separation algorithms.

* Such algorithms typically estimate the ideal binary mask
(IBM)-a binary mask defined in the time-frequency (T-F)
domain that identifies speech dominant and noise dominant
T-F units.

* The above method can be extended to ideal ratio mask (IRM),
which represents the ratio of speech to mixture energy.
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System Description

* Block Diagram of the Proposed System
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System Description

* Addressing Additive Noise and Convolutional Distortion

* The additive noise and the convolutional distortion are dealt
with in two separate stages: Noise removal followed by
channel compensation.

* Noise is removed via T-F masking using the IRM. To
compensate for channel mismatch and the errors introduced
by masking, we learn a non-linear mapping function that
undoes these distortions.



System Description

* Time-Frequency Masking
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System Description

* Time-Frequency Masking (Cont’d)

* Here the authors perform T-F masking in the mel-frequency
domain, unlike some of the other systems that operate in the
gammatone feature domain.

* To obtain the mel-spectrogram of a signal, it is first pre-
emphasized and transformed to the linear frequency domain
using a 320 channel fast Fourier transform (FFT). A 20msec
Hamming window is used. The 161-dimensional spectrogram
is then converted to a 26-channel mel-spectrogram.



System Description

* Time-Frequency Masking (Cont’d)

* The authors use DNNs to estimate the IRM as DNNs show
good performance and training using stochastic gradient
descent scales well compared to other nonlinear
discriminative classifiers.



System Description

* Time-Frequency Masking (Cont’d)
* Target Signal

* The ideal ratio mask is defined as the ratio of the clean signal
energy to the mixture energy at each time-frequency unit.

* The mathematical expression is shown below.

IO(SNR(t,f)/lo)

IRM(f,f) — 1O(SNR(t,f)/10) +1

SNR(t,f)=10log,,(X(t,f)/ N(¢,f))



System Description

* Time-Frequency Masking (Cont’d)
* Target Signal

* Rather than estimating IRM directly, the authors estimate a
transformed version of the SNR.

* The mathematical expression of the sigmoidal
transformation is shown below.

1
1+ exp(—a(SNR(z, f)— B))

d(t,f)=



System Description

* Time-Frequency Masking (Cont’d)
* Target Signal

* During testing, the values output from the DNN are mapped
back to their corresponding IRM values.



System Description

* Time-Frequency Masking (Cont’d)
* Features

* Feature extraction is performed both at the fullband and the
subband level.

* The combination of features, 31 dimensional MFCCs, 13
dimensional FASTA filtered PLPs and 15 dimensional
amplitude modulation spectrogram (AMS) features, are used.



System Description

* Time-Frequency Masking (Cont’d)

 Features

* The fullband features are derived

by splicing together

fullband MFCCs and RASTA-PLPs, along with their delta and

acceleration components, and su
* The subband features are derivec

oband AMS features.
by splicing together

subband MFCCs, RASTA-PLPs, and AMS features. Some
auxiliary components are also added.



System Description

* Time-Frequency Masking (Cont’d)
* Supervised Learning

* IRM estimation is performed in two stages. In the first stage,
multiple DNNs are trained using fullband and subband
features. The final estimate is obtained using an MLP that
combines the output of the fullband and the subband DNNs.



System Description

* Time-Frequency Masking (Cont’d)
* Supervised Learning

* The fullband DNNs would be cognizant of the overall spectral
shape of the IRM and the information conveyed by the
fullband features, whereas the subband DNNs are expected
to be more robust to noise occurring at frequencies outside
their passband.



System Description

* Time-Frequency Masking (Cont’d)

ul'”! '

o

Frequency (Hz)

o WOU
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(d) (e) (H)

Fig. 2. (Color online) Example of T-F masking. (a) Mel spectrogram of a clean signal from the Aurora-4 corpus. (b) Mel spectrogram of the same signal mixed
with babble noise. (c) Map of the true instantaneous SNRs, expressed in dB. (d) Instantaneous SNRs estimated using subband features and the corresponding DNNs.
The mean absolute SNR estimation error for this mask is 2.9 dB. (e) Instantaneous SNRs estimated using fullband features. SNR estimation error for this mask is
2.5 dB. (e) Instantaneous SNR estimates obtained after combining the masks in (d) and (e). It can be noticed that the mask in (f) is smoother than those in (d) and
(€). SNR estimation error for this mask is 2.1 dB. Note that the SNR estimates are rounded to the range [—15, 10] dB before calculating the mean absolute error.

From: The paper
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System Description

* Feature Mapping
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System Description

* Feature Mapping (Cont’d)

* Even after T-F masking, channel mismatch can still
significantly impact performance.

* This happens for two reasons. Firstly, the algorithm learns to
estimate the ratio mask using mixtures of speech and noise
recorded using a single microphone. Secondly, because
channel mismatch is convolutional, speech and noise, which
now includes both background noise and convolutive noise,
are clearly not uncorrelated.



System Description

* Feature Mapping (Cont’d)

* The goal of feature mapping in this work is to learn spectro-
temporal correlations that exist in speech to undo the
distortions introduced by unseen microphones and the first
stage of the algorithm.



System Description

* Feature Mapping (Cont’d)
* Target Signal

* The target is the clean log-mel spectrogram (LMS). The
“clean” LMS here corresponds to those obtained from the
clean signals recorded using a single microphone in a single
filter setting.



System Description

* Feature Mapping (Cont’d)
* Target Signal

* Instead of using the LMS directly as the target, the authors
apply a linear transform to limit the target values to the
range [0, 1] to use the sigmoidal transfer function for the
output layer of the DNN.

* The mathematical expression is as follows.

In(X(z, f))— min(In(X(-, )))
max(In(X (-, £)))— min(In(X(-, f)))

Xd(taf):



System Description

* Feature Mapping (Cont’d)
* Target Signal

* During testing, the output of the DNN is mapped back to the
dynamic range of the utterances in training set.



System Description

* Feature Mapping (Cont’d)
* Features
* The authors use both the noisy and the masked LMS.

* Supervised Learning

* Unlike the DNNs used for IRM estimation, the hidden layers
of the DNN for this task use rectified linear units (ReLUs). In
addition, the output layer uses sigmoid activations.




System Description

* Feature Mapping (Cont’d)
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System Description

* Acoustic Modeling
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System Description

* Acoustic Modeling (Cont’d)
* The acoustic models are trained using the Aurora-4 dataset.

* Aurora-4 is a 5000-word closed vocabulary recognition task
based on the Wall Street Journal database. The corpus has
two training sets, clean and multi-condition, both with 7138
utterances.



System Description

* Acoustic Modeling (Cont’d)
e Gaussian Mixture Models

* The HMMs and the GMMs are initially trained using the
clean training set. The clean models are then used to
initialize the multi-condition models; both clean and multi-
condition models have the same structure and differ only in
transition and observation probability densities.




System Description

* Acoustic Modeling (Cont’d)
 Deep Neural Networks

* The authors first align the clean training set to obtain senone
labels at each time-frame for all utterances in the training
set. DNNs are then trained to predict the posterior
probability of senones using either clean features or features
extracted from the multi-condition set.




System Description

* Diagonal Feature Discriminant Linear Regression
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System Description

* Diagonal Feature Discriminant Linear Regression (Cont’d)
* dFDLR is a semi-supervised feature adaptation technique.

* The motivation for developing dFDLR is to address the
problem of generalization to unseen microphone conditions
in our dataset, which is where the DNN-HMM systems
perform the worst.



System Description

* Diagonal Feature Discriminant Linear Regression (Cont’d)

* To apply dFDLR, we first obtain an initial senone-level
labeling for our test utterances using the unadapted models.
Features are then transformed to minimize the cross-entropy
error in predicting these labels.

* The mathematical expressions are as follow.
O,(f)=w, +0,(f)+b,

minzt E(s,,D, (ét_s ---ér+5 )



System Description

* Diagonal Feature Discriminant Linear Regression (Cont’d)

* The parameters can easily be learned within the DNN
framework by adding a layer between the input layer and
the first hidden layer of the original DNN. After initialization,
the standard backpropagation algorithm is run for 10 epochs
to learn the parameters of the dFDLR model. During
backpropagation, weights of the original hidden layers are

kept unchanged and only the parameters in the dFDLR are
updated.
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Evaluation Results

TABLE I
WORD ERROR RATES ON THE AURORA-4 CORPUS USING THE GMM-HMM
SYSTEMS. THE COLUMNS CLEAN, NOISY, CLEAN + CHANNEL, AND
NoISY + CHANNEL CORRESPOND TO THE WER AVERAGED ON TEST SETS
1,2TO 7, 8, AND 9 TO 14, RESPECTIVELY. THE BEST PERFORMANCE
IN EACH CONDITION IS MARKED IN BOLD. RESULTS OBTAINED USING
VTS-BASED MODEL ADAPTATION IS ALSO SHOWN

. Clean +  Noisy +
System Clean Noisy Channel Cha lrnel Average
Clean Training
Noisy 9.1 27.0 229 443 32.8
AFE 9.0 23.2 29.9 384 29.2
Feature mapping 9.8 16.3 14.3 29.6 214
T-F masking 94 15.3 23.1 36.4 245
+ feature mapping 9.7 15.2 14.1 28.9 20.6
Multi-condition Training
Noisy 10.6 17.2 17.7 31.8 23.0
AFE 10.3 18.4 20.0 30.4 23.1
Feature mapping 11.7 159 14.7 il 20.5
T-F masking 10.7 14.3 20.1 31.7 21.9
+ feature mapping 11.8 16.0 14.5 27.2 204
VTS [45] 6.9 15.1 11.8 233 17.8

From: The paper
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Evaluation Results

TABLE 11
WORD ERROR RATES ON THE AURORA-4 CORPUS USING THE
DNN-HMM SYSTEMS TRAINED IN CLEAN CONDITIONS. THE BEST
PERFORMANCE IN EACH CONDITION IS MARKED IN BOLD

TABLE III
WORD ERROR RATES ON THE AURORA-4 CORPUS USING THE DNN-HMM
SYSTEMS TRAINED ON THE MULTI-CONDITION SET. THE BEST
PERFORMANCE IN EACH CONDITION IS MARKED IN BOLD

Clean +  Noisy +

: . Clean +  Noisy +
System Clean  Noisy ol  Channel Average System Clean  Noisy Che:l:lnel CI?;?nel Average
' Cepstral features Cepstral features
Noisy 5.3 19.2 18.6 36.1 254 Noisy 67 10.9 10.4 71.0 153
+ dFDLR 52 196 17.5 35.9 25.4 + dFDLR 67 110 0.8 214 15.1
Feature mapping 54 9.9 9.5 229 15.1 Proposed frontend 6.7 10.0 10.2 203 142
+ dFDLR 54 9.7 8.8 223 14.7 + dFLDR 6.8 9.7 9.5 19.7 13.7
Proposed frontend 5.6 9.3 9.5 220 14.5 Concat-features 56 80 94 205 13.6
+ dFDLR 54 9.2 9.1 214 14.1 + dFDLR 54 8.7 8.8 20.0 13.3
log-mel features log-mel features
Noisy 5.2 22.9 21.3 41.6 29.5 Noisy 53 85 9.0 182 12.5
+ dFDLR 5.1 22.7 20.5 41.4 29.3 + dFDLR 5.1 8.5 8.4 17.6 12.1
Feature mapping 53 10.7 9.6 25.2 16.4 Proposed frontend 5.3 9.0 89 219 143
+ dFDLR 53 103 8.7 24.5 15.9 + dFDLR 53 3.8 37 213 13.9
Proposed frontend 52 9.5 9.6 24.0 15.4 Concat-features 4.9 34 33 20.4 133
+ dFDLR 4.9 9.2 9.0 23.3 14.9 + dFDLR 4.8 8.2 8.1 20.0 13.0

From: The paper
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Discussion

* Several interesting observations can be made from the
results presented in the previous section.

* Firstly, the results clearly show that the speech separation
front-end is doing a good job at removing noise and handling
channel mismatch.

* Secondly, with no channel mismatch, T-F masking alone
worked well in removing noise.



Discussion

* Finally, directly performing feature mapping from noisy
features to clean features performs reasonably, but it does
not perform as well as the proposed front-end.



Vteank You !



